On pitfalls in computing the geodetic number of a graph

被引:6
|
作者
Hansen, Pierre [1 ,2 ]
van Omme, Nikolaj [3 ,4 ]
机构
[1] Gerad, Montreal, PQ, Canada
[2] HEC Montreal, Montreal, PQ, Canada
[3] CRT, Montreal, PQ, Canada
[4] Ecole Polytech, Montreal, PQ H3C 3A7, Canada
关键词
Graph; Geodetic number; Maximal geodetic closure; Algorithm;
D O I
10.1007/s11590-006-0032-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a simple connected graph G = (V, E) the geodetic closure I[S] subset of V of a subset S of V is the union of all sets of nodes lying on some geodesic (or shortest path) joining a pair of nodes v(k), v(l) epsilon S. The geodetic number, denoted by g(G), is the smallest cardinality of a node set S* such that I[S*] = V. In "The geodetic number of a graph", [Harary et al. in Math. Comput. Model. 17: 89-95, 1993] propose an incorrect algorithm to find the geodetic number of a graph G. We provide counterexamples and show why the proposed approach must fail. We then develop a 0-1 integer programming model to find the geodetic number. Computational results are given.
引用
收藏
页码:299 / 307
页数:9
相关论文
共 50 条
  • [21] THE CONNECTED DOUBLE GEODETIC NUMBER OF A GRAPH
    Santhakumaran, A. P.
    Jebaraj, T.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2021, 39 (1-2): : 155 - 163
  • [22] The upper forcing geodetic number of a graph
    Zhang, P
    ARS COMBINATORIA, 2002, 62 : 3 - 15
  • [23] On the geodetic iteration number of the contour of a graph
    Mezzini, Mauro
    DISCRETE APPLIED MATHEMATICS, 2016, 206 : 211 - 214
  • [24] The Outer Connected Geodetic Number of a Graph
    Ganesamoorthy, K.
    Jayanthi, D.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2021, 91 (02) : 195 - 200
  • [25] The upper connected edge geodetic number of a graph
    Santhakumaran, A. P.
    John, J.
    FILOMAT, 2012, 26 (01) : 131 - 141
  • [26] Symbolic Regression for Approximating Graph Geodetic Number
    Anaqreh, Ahmad T.
    Toth, Boglarka G.
    Vinko, Tamas
    ACTA CYBERNETICA, 2021, 25 (02): : 151 - 169
  • [27] The edge geodetic self decomposition number of a graph
    John, J.
    Stalin, D.
    RAIRO-OPERATIONS RESEARCH, 2021, 55 : S1935 - S1947
  • [28] On the hardness of finding the geodetic number of a subcubic graph
    Bueno, Leticia R.
    Penso, Lucia D.
    Protti, Fabio
    Ramos, Victor R.
    Rautenbach, Dieter
    Souza, Ueverton S.
    INFORMATION PROCESSING LETTERS, 2018, 135 : 22 - 27
  • [29] The Edge-to-Vertex Geodetic Number of a Graph
    Santhakumaran, A. P.
    JOURNAL OF ADVANCED MATHEMATICS AND APPLICATIONS, 2015, 4 (02) : 177 - 181
  • [30] Algorithmic upper bounds for graph geodetic number
    Anaqreh, Ahmad T.
    G-Toth, Boglarka
    Vinko, Tamas
    CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2022, 30 (04) : 1221 - 1237