Multi-objective optimization of TSK fuzzy models

被引:15
|
作者
Guenounou, O. [1 ]
Belmehdi, A. [1 ]
Dahhou, B. [2 ]
机构
[1] Univ Bejaia, Lab Ind Technol & Informat LT21, Bejaia, Algeria
[2] CNRS, LAAS, F-31077 Toulouse, France
关键词
Backpropagation; Genetic algorithms/NSGA-II; Fuzzy rules; Hybrid algorithm; Structure; GENETIC ALGORITHMS; DYNAMIC-SYSTEMS; IDENTIFICATION;
D O I
10.1016/j.eswa.2008.09.044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a hybrid algorithm to optimize the structure of TSK type fuzzy model using backpropagation (BP) learning algorithm and non-dominated sorting genetic algorithm (NSGA-II). In a first step, BP algorithm is used to optimize the parameters of the model (parameters of membership functions and fuzzy rules). NSCA-II is used in a second phase, to optimize the number of fuzzy rules and to fine tune the parameters. A well known benchmark is used to evaluate performances of the proposed modelling approach, and compare it with other modelling approaches. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7416 / 7423
页数:8
相关论文
共 50 条
  • [41] A fuzzy multi-objective optimization approach for treated wastewater allocation
    Saeid Tayebikhorami
    Mohammad Reza Nikoo
    Mojtaba Sadegh
    [J]. Environmental Monitoring and Assessment, 2019, 191
  • [42] A Fuzzy Multi-objective Optimization Algorithm in Mine Ore Blending
    Li, Liang
    Xu, Tiejun
    Liu, Zhiqiang
    [J]. INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, 2009, : 773 - +
  • [43] An interactive fuzzy multi-objective optimization method for engineering design
    Huang, Hong-Zhong
    Gu, Ying-Kui
    Du, Xiaoping
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2006, 19 (05) : 451 - 460
  • [44] Evolutionary Multi-objective Optimization for Evolving Hierarchical Fuzzy System
    Jarraya, Yosra
    Bouaziz, Souhir
    Alimi, Adel M.
    Abraham, Ajith
    [J]. 2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 3163 - 3170
  • [45] Multi-Objective Regression Test Suite Optimization with Fuzzy Logic
    Anwar, Zeeshan
    Ahsan, Ali
    [J]. 2013 16TH INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), 2013, : 95 - 100
  • [46] A multi-objective evolutionary approach for Fuzzy optimization in production planning
    Jimenez, F.
    Sanchez, G.
    Vasant, P.
    Verdegay, J. L.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 3120 - +
  • [47] Study on multi-objective fuzzy optimization algorithm for chemical process
    Sun, L
    Fan, XS
    Yao, PJ
    [J]. PROCESS SYSTEMS ENGINEERING 2003, PTS A AND B, 2003, 15 : 1370 - 1375
  • [48] Fuzzy multi-objective fitness functions for dynamical system optimization
    Fang, XP
    Kellog, B
    Conlan, T
    Dickerson, J
    [J]. NAFIPS'2003: 22ND INTERNATIONAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS PROCEEDINGS, 2003, : 347 - 352
  • [49] A generic fuzzy approach for multi-objective optimization under uncertainty
    Bahri, Oumayma
    Talbi, El-Ghazali
    Ben Amor, Nahla
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2018, 40 : 166 - 183
  • [50] A Combined Algorithm for Multi-objective Fuzzy Optimization of Whey Fermentation
    Petrov, M.
    Ilkova, T.
    [J]. CHEMICAL AND BIOCHEMICAL ENGINEERING QUARTERLY, 2009, 23 (02) : 153 - 159