Composite vortices in nonlinear circular waveguide arrays

被引:13
|
作者
Leykam, Daniel [1 ]
Malomed, Boris [2 ]
Desyatnikov, Anton S. [1 ]
机构
[1] Australian Natl Univ, Nonlinear Phys Ctr, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
[2] Tel Aviv Univ, Dept Phys Elect, Sch Elect Engn, Fac Engn, IL-69978 Tel Aviv, Israel
基金
澳大利亚研究理事会;
关键词
discrete vortex; cross phase modulation; hidden vorticity; linear stability; VECTOR SOLITONS; VORTEX SOLITONS; DISCRETE SOLITONS; OPTICAL VORTICES; STABILITY; BEAMS; MEDIA;
D O I
10.1088/2040-8978/15/4/044016
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is known that, in continuous media, composite solitons with hidden vorticity, which are built of two mutually symmetric vortical components whose total angular momentum is zero, may be stable while their counterparts with explicit vorticity and nonzero total angular momentum are unstable. In this work, we demonstrate that the opposite occurs in discrete media: hidden vortex states in relatively small ring chains become unstable with the increase of the total power, while explicit vortices are stable, provided that the corresponding scalar vortex state is also stable. There are also stable mixed states, in which the components are vortices with different topological charges. Additionally, degeneracies in families of composite vortex modes lead to the existence of long-lived breather states which can exhibit vortex-charge flipping in one or both components.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Optical limiting properties of nonlinear multimode waveguide arrays
    Butler, James J.
    Flom, Steven R.
    Shirk, James S.
    Taunay, Thierry E.
    Wright, Barbara M.
    Wiggins, Michael J.
    OPTICS EXPRESS, 2009, 17 (02): : 804 - 809
  • [32] Quantum correlations of solitons in nonlinear Kerr waveguide arrays
    Martynov, V. O.
    Munyaev, V. O.
    Smirnov, L. A.
    INTERNATIONAL CONFERENCE LASER OPTICS 2020 (ICLO 2020), 2020,
  • [33] Strongly localized vectorial modes in nonlinear waveguide arrays
    Darmanyan, S
    Kobyakov, A
    Schmidt, E
    Lederer, F
    PHYSICAL REVIEW E, 1998, 57 (03): : 3520 - 3530
  • [34] Discrete vector solitons in Kerr nonlinear waveguide arrays
    Meier, J
    Hudock, J
    Christodoulides, D
    Stegeman, G
    Silberberg, Y
    Morandotti, R
    Aitchison, JS
    PHYSICAL REVIEW LETTERS, 2003, 91 (14)
  • [35] Light bullets in nonlinear periodically curved waveguide arrays
    Matuszewski, Michal
    Garanovich, Ivan L.
    Sukhorukov, Andrey A.
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [36] Trapping of discrete solitons by defects in nonlinear waveguide arrays
    Morales-Molina, L
    Vicencio, RA
    OPTICS LETTERS, 2006, 31 (07) : 966 - 968
  • [37] Observation of nonlinear surface waves in modulated waveguide arrays
    Qi, Xinyuan
    Garanovich, Ivan L.
    Xu, Zhiyong
    Sukhorukov, Andrey A.
    Krolikowski, Wieslaw
    Mitchell, Arnan
    Zhang, Guoquan
    Neshev, Dragomir N.
    Kivshar, Yuri S.
    OPTICS LETTERS, 2009, 34 (18) : 2751 - 2753
  • [38] Tunable Generation of Spatial Entanglement in Nonlinear Waveguide Arrays
    Raymond, A.
    Zecchetto, A.
    Palomo, J.
    Morassi, M.
    Lemaître, A.
    Raineri, F.
    Amanti, M.I.
    Ducci, S.
    Baboux, F.
    Physical Review Letters, 2024, 133 (23)
  • [39] Dirac light bullets in nonlinear binary waveguide arrays
    Tran, Truong X.
    Duong, Dung C.
    CHAOS, 2018, 28 (01)
  • [40] Modeling of spatial gap solitons in nonlinear waveguide arrays
    Armaroli, A.
    Valentini, S.
    Bellanca, G.
    Trillo, S.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2006, 48 (12) : 2591 - 2595