Composite vortices in nonlinear circular waveguide arrays

被引:13
|
作者
Leykam, Daniel [1 ]
Malomed, Boris [2 ]
Desyatnikov, Anton S. [1 ]
机构
[1] Australian Natl Univ, Nonlinear Phys Ctr, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
[2] Tel Aviv Univ, Dept Phys Elect, Sch Elect Engn, Fac Engn, IL-69978 Tel Aviv, Israel
基金
澳大利亚研究理事会;
关键词
discrete vortex; cross phase modulation; hidden vorticity; linear stability; VECTOR SOLITONS; VORTEX SOLITONS; DISCRETE SOLITONS; OPTICAL VORTICES; STABILITY; BEAMS; MEDIA;
D O I
10.1088/2040-8978/15/4/044016
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is known that, in continuous media, composite solitons with hidden vorticity, which are built of two mutually symmetric vortical components whose total angular momentum is zero, may be stable while their counterparts with explicit vorticity and nonzero total angular momentum are unstable. In this work, we demonstrate that the opposite occurs in discrete media: hidden vortex states in relatively small ring chains become unstable with the increase of the total power, while explicit vortices are stable, provided that the corresponding scalar vortex state is also stable. There are also stable mixed states, in which the components are vortices with different topological charges. Additionally, degeneracies in families of composite vortex modes lead to the existence of long-lived breather states which can exhibit vortex-charge flipping in one or both components.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Higher-charged vortices in mixed linear-nonlinear circular arrays
    Dong, Liangwei
    Li, Huijun
    Huang, Changming
    Zhong, Shunsheng
    Li, Chunyan
    PHYSICAL REVIEW A, 2011, 84 (04):
  • [2] ANALYSIS OF CIRCULAR WAVEGUIDE ARRAYS ON CYLINDERS
    STEYSKAL, H
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1977, 25 (05) : 610 - 616
  • [3] ANALYSIS OF CIRCULAR WAVEGUIDE PHASED ARRAYS
    AMITAY, N
    GALINDO, V
    BELL SYSTEM TECHNICAL JOURNAL, 1968, 47 (09): : 1903 - +
  • [4] Nonlinear waveguide arrays in AlGaAs
    Millar, P
    Aitchison, JS
    Kang, JU
    Stegeman, GI
    Villeneuve, A
    Kennedy, GT
    Sibbett, W
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (11) : 3224 - 3231
  • [5] Vortex Solitons in Twisted Circular Waveguide Arrays
    Dong, Liangwei
    Kartashov, Yaroslav, V
    Torner, Lluis
    Ferrando, Albert
    PHYSICAL REVIEW LETTERS, 2022, 129 (12)
  • [6] Nonlinear infrared plasmonic waveguide arrays
    Alessandro Salandrino
    Yuan Wang
    Xiang Zhang
    Nano Research, 2016, 9 : 224 - 229
  • [7] Nonlinear infrared plasmonic waveguide arrays
    Salandrino, Alessandro
    Wang, Yuan
    Zhang, Xiang
    NANO RESEARCH, 2016, 9 (01) : 224 - 229
  • [8] Spatial photonics in nonlinear waveguide arrays
    Fleischer, JW
    Bartal, G
    Cohen, O
    Schwartz, T
    Manela, O
    Freedman, B
    Segev, M
    Buljan, H
    Efremidis, NK
    OPTICS EXPRESS, 2005, 13 (06): : 1780 - 1796
  • [9] Discrete solitons in nonlinear waveguide arrays
    Lederer, F
    Aitchison, JS
    OPTICAL SOLITONS: THEORETICAL CHALLENGES AND INDUSTRIAL PERSPECTIVES, 1999, (12): : 349 - 365
  • [10] A Jacobi elliptic function method for nonlinear arrays of vortices
    A. H. Bhrawy
    M. M. Tharwat
    A. Yildirim
    M. A. Abdelkawy
    Indian Journal of Physics, 2012, 86 : 1107 - 1113