Deep Cross-Domain Fashion Recommendation

被引:22
|
作者
Jaradat, Shatha [1 ]
机构
[1] KTH Royal Inst Technol, Stockholm, Sweden
关键词
Fashion recommendation; deep learning; cross-domain knowledge transfer; transfer learning; domain adaptation; CNN;
D O I
10.1145/3109859.3109861
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the increasing number of online shopping services, the number of users and the quantity of visual and textual information on the Internet, there is a pressing need for intelligent recommendation systems that analyze the user's behavior amongst multiple domains and help them to find the desirable information without the burden of search. However, there is little research that has been done on complex recommendation scenarios that involve knowledge transfer across multiple domains. This problem is especially challenging when the involved data sources are complex in terms of the limitations on the quantity and quality of data that can be crawled. The goal of this paper is studying the connection between visual and textual inputs for better analysis of a certain domain, and to examine the possibility of knowledge transfer from complex domains for the purpose of efficient recommendations. The methods employed to achieve this study include both design of architecture and algorithms using deep learning technologies to analyze the effect of deep pixel-wise semantic segmentation and text integration on the quality of recommendations. We plan to develop a practical testing environment in a fashion domain.
引用
下载
收藏
页码:407 / 410
页数:4
相关论文
共 50 条
  • [31] Transfer learning in cross-domain sequential recommendation
    Xu, Zitao
    Pan, Weike
    Ming, Zhong
    INFORMATION SCIENCES, 2024, 669
  • [32] Cross-Domain Recommendation: Challenges, Progress, and Prospects
    Zhu, Feng
    Wang, Yan
    Chen, Chaochao
    Zhou, Jun
    Li, Longfei
    Liu, Guanfeng
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 4721 - 4728
  • [33] Data Poisoning Attacks on Cross-domain Recommendation
    Chen, Huiyuan
    Li, Jing
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2177 - 2180
  • [34] Debiasing Learning based Cross-domain Recommendation
    Li, Siqing
    Yao, Liuyi
    Mu, Shanlei
    Zhao, Wayne Xin
    Li, Yaliang
    Guo, Tonglei
    Ding, Bolin
    Wen, Ji-Rong
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 3190 - 3199
  • [35] Domain-Oriented Knowledge Transfer for Cross-Domain Recommendation
    Zhao, Guoshuai
    Zhang, Xiaolong
    Tang, Hao
    Shen, Jialie
    Qian, Xueming
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9539 - 9550
  • [36] Learning Domain Semantics and Cross-Domain Correlations for Paper Recommendation
    Xie, Yi
    Sun, Yuqing
    Bertino, Elisa
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 706 - 715
  • [37] Domain-Invariant Task Optimization for Cross-domain Recommendation
    Liu, Dou
    Hao, Qingbo
    Xiao, Yingyuan
    Zheng, Wenguang
    Wang, Jinsong
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT III, 2024, 14449 : 488 - 499
  • [38] A Parallel Deep Neural Network Using Reviews and Item Metadata for Cross-Domain Recommendation
    Hong, Wenxing
    Zheng, Nannan
    Xiong, Ziang
    Hu, Zhiqiang
    IEEE Access, 2020, 8 : 41774 - 41783
  • [39] A Parallel Deep Neural Network Using Reviews and Item Metadata for Cross-Domain Recommendation
    Hong, Wenxing
    Zheng, Nannan
    Xiong, Ziang
    Hu, Zhiqiang
    IEEE ACCESS, 2020, 8 : 41774 - 41783
  • [40] Cross-Domain Recommendation via Tag Matrix Transfer
    Fang, Zhou
    Gao, Sheng
    Li, Bo
    Li, Juncen
    Liao, Jianxin
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2015, : 1235 - 1240