Time-dependent density functional theory employing optimized effective potentials

被引:85
|
作者
Hirata, S [1 ]
Ivanov, S [1 ]
Grabowski, I [1 ]
Bartlett, RJ [1 ]
机构
[1] Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2002年 / 116卷 / 15期
关键词
D O I
10.1063/1.1460869
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Exchange-only ab initio (parameter-free) time-dependent density functional calculations for the vertical excitation energies of atoms and polyatomic molecules are performed by employing optimized effective potentials (OEP's) and their corresponding adiabatic exchange kernels for the first time. Accurate OEP's are obtained by a novel linear-combination-of-atomic-orbital (LCAO) algorithm [R. Colle and R. K. Nesbet, J. Phys. B 34, 2475 (2001)] in which a potential is represented as a sum of a seed potential having the correct -1/r asymptotic behavior and a small and rapidly decaying correction, the latter being approximated accurately by a linear combination of Gaussian functions. The time-dependent OEP (TDOEP) methods with and without the Tamm-Dancoff approximation are implemented by using a trial-vector algorithm, which allows us to avoid the storage or manipulation of transformed two-electron integrals or the diagonalization of large matrices. No approximation is made to TDOEP, besides the adiabatic approximation to the exchange kernel, the LCAO expansion of the orbitals and potentials, and occasionally the Tamm-Dancoff approximation. The vertical excitation energies of the beryllium atom and the nitrogen and water molecules calculated by TDOEP are compared with those obtained from time-dependent density functional theory (TDDFT) employing conventional local or gradient-corrected functionals, configuration interaction singles (CIS), time-dependent Hartree-Fock (TDHF) theory, similarity-transformed equation-of-motion coupled-cluster with single and double substitutions, and experiments. TDOEP, which neglects electron correlation while treating the exchange contribution rigorously within the Kohn-Sham DFT framework, performs equally well as, or even appreciably better than, CIS or TDHF. The slightly better performance of TDOEP might be attributed to the local nature of the exchange potentials that allows the bare orbital energy differences to approximate excitation energies well. Nevertheless, TDDFT employing local or gradient-corrected functionals outperforms TDOEP for low-lying valence excited states, implying that the former somehow accounts for electron correlation effectively, whereas for high-lying and Rydberg excited states, the latter performs better than the former. By combining the desirable features of OEP and local or gradient-corrected exchange-correlation potentials, we arrive at a simple asymptotic correction scheme to the latter. TDDFT with the asymptotic correction yields uniformly accurate excitation energies for both valence and Rydberg excited states. (C) 2002 American Institute of Physics.
引用
收藏
页码:6468 / 6481
页数:14
相关论文
共 50 条
  • [41] Excitonic effects in a time-dependent density functional theory
    Igumenshchev, Kirill I.
    Tretiak, Sergei
    Chernyak, Vladimir Y.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (11):
  • [42] Time-dependent density functional theory for quantum transport
    Kwok, Yanho
    Zhang, Yu
    Chen, GuanHua
    FRONTIERS OF PHYSICS, 2014, 9 (06) : 698 - 710
  • [43] General excitations in time-dependent density functional theory
    Vahtras, Olav
    Rinkevicius, Zilvinas
    JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (11):
  • [44] Time-dependent density-functional theory for superfluids
    Chiofalo, ML
    Tosi, MP
    EUROPHYSICS LETTERS, 2001, 53 (02): : 162 - 168
  • [45] A Brief Compendium of Time-Dependent Density Functional Theory
    Ullrich, Carsten A.
    Yang, Zeng-hui
    BRAZILIAN JOURNAL OF PHYSICS, 2014, 44 (01) : 154 - 188
  • [46] PAIRING DYNAMICS AND TIME-DEPENDENT DENSITY FUNCTIONAL THEORY
    Magierski, P.
    Grineviciute, J.
    Sekizawa, K.
    ACTA PHYSICA POLONICA B, 2018, 49 (03): : 281 - 291
  • [47] Charge transfer in time-dependent density functional theory
    Maitra, Neepa T.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (42)
  • [48] Floquet formulation of time-dependent density functional theory
    Telnov, D. A.
    Chu, S.-I.
    Chemical Physics Letters, 264 (05):
  • [49] Time-dependent density functional theory for nonadiabatic processes
    Baer, R
    Kurzweil, Y
    Cederbaum, LS
    ISRAEL JOURNAL OF CHEMISTRY, 2005, 45 (1-2) : 161 - 170
  • [50] Time-dependent density functional theory for quantum transport
    Zheng, Xiao
    Chen, GuanHua
    Mo, Yan
    Koo, SiuKong
    Tian, Heng
    Yam, ChiYung
    Yan, YiJing
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (11):