Atangana-Batogna numerical scheme applied on a linear and non-linear fractional differential equation

被引:14
|
作者
Alkahtani, Badr Saad T. [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 1142, Riyadh 11989, Saudi Arabia
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2018年 / 133卷 / 03期
关键词
D O I
10.1140/epjp/i2018-11961-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, Atangana and Batogna suggested a new numerical scheme to solve linear and non-linear equations with classical and fractional differential operators. The method can be understood as a combination of forward (or backward) approximation and the Adams-Bashforth one. This paper further presents the application of the new method to a linear and non-linear partial differential equation with integer- and non-integer-order derivative. The stability and convergence analyses are presented in detail. Some simulations are done to verify the efficiency of the new numerical scheme for solving linear and non-linear equations.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A computationally efficient scheme for the non-linear diffusion equation
    Termonia, P.
    Van de Vyver, H.
    [J]. PHYSICS LETTERS A, 2009, 373 (17) : 1573 - 1577
  • [32] EXACT SOLUTIONS OF NON-LINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS BY FRACTIONAL SUB-EQUATION METHOD
    Ma, Hong-Cai
    Yao, Dan-Dan
    Peng, Xiao-Fang
    [J]. THERMAL SCIENCE, 2015, 19 (04): : 1239 - 1244
  • [33] Quasi wavelet numerical approach of non-linear reaction diffusion and integro reaction-diffusion equation with Atangana-Baleanu time fractional derivative
    Kumar, Sachin
    Pandey, Prashant
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 130
  • [34] A numerical method for solving Linear Non-homogenous Fractional Ordinary Differential Equation
    Moghaddam, B. P.
    Aghili, A.
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2012, 6 (03): : 441 - 445
  • [35] DIFFERENTIAL OPERATORS IN MANIFOLD OF SOLUTIONS OF A NON-LINEAR DIFFERENTIAL EQUATION
    SEGAL, I
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1965, 44 (02): : 107 - &
  • [36] DIFFERENTIAL OPERATORS IN MANIFOLD OF SOLUTIONS OF A NON-LINEAR DIFFERENTIAL EQUATION
    SEGAL, I
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1965, 44 (01): : 71 - &
  • [37] NON-LINEAR FRACTIONAL FUNCTIONAL PROGRAMMING WITH NON-LINEAR CONSTRAINTS
    BECTOR, CR
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1968, 48 (04): : 284 - &
  • [38] Highly efficient numerical scheme for solving fuzzy system of linear and non-linear equations with application in differential equations
    Shams, Mudassir
    Kausar, Nasreen
    Agarwal, Praveen
    Momani, Shaher
    Shah, Mohd Asif
    [J]. APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2022, 30 (01): : 777 - 810
  • [39] On theoretical and numerical analysis of fractal--fractional non-linear hybrid differential equations
    Shafiullah
    Shah, Kamal
    Sarwar, Muhammad
    Abdeljawad, Thabet
    [J]. NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2024, 13 (01):
  • [40] Numerical studies of the cubic non-linear Schrodinger equation
    Talaat S. El-Danaf
    Mohamed A. Ramadan
    Faisal E. I. Abd Alaal
    [J]. Nonlinear Dynamics, 2012, 67 : 619 - 627