Perylene Diimide-Based Electron-Transporting Material for Perovskite Solar Cells with Undoped Poly(3-hexylthiophene) as Hole-Transporting Material

被引:30
|
作者
Zou, Ding [1 ]
Yang, Fafu [1 ]
Zhuang, Qixin [1 ]
Zhu, Mingguang [1 ]
Chen, Yunxiang [1 ]
You, Guofeng [1 ]
Lin, Zhenghuan [1 ]
Zhen, Hongyu [1 ]
Ling, Qidan [1 ]
机构
[1] Fujian Normal Univ, Coll Chem & Mat Sci, Fujian Key Lab Polymer Mat, Fuzhou 350007, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
electron transport; energy conversion; perovskites; polycycles; solar cells; HIGHLY EFFICIENT; HALIDE PEROVSKITES; LOW-TEMPERATURE; SMALL-MOLECULE; PERFORMANCE; LAYERS; HYSTERESIS; STABILITY; MORPHOLOGY; CONVERSION;
D O I
10.1002/cssc.201802421
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Perylene diimide-based small molecules are widely used as intermediates of liquid crystals, owing to their high planarity and electron mobility. In this study, tetrachloroperylene diimide (TCl-PDI) was used as a small-molecule replacement for TiO2 as electron-transporting material (ETM) for planar perovskite solar cells (PVSCs). Among hole-transporting materials (HTMs) for PVSCs, poly(3-hexylthiophene) (P3HT) gives the devices the highest stability and reproducibility. Therefore, PVSCs with the structure of indium tin oxide (ITO)/ETM/perovskite/P3HT/MoO3/Ag were used to evaluate the performances of new ETMs. A reference device with compact TiO2 and P3HT gave a reasonable power conversion efficiency (PCE) of 12.78 %, whereas the PVSC with TCl-PDI as ETM gave an enhanced PCE of 14.73 %, which is among the highest reported values for PVSCs with undoped P3HT as the HTM. Moreover, TCl-PDI-based devices displayed higher stability than those based on compact TiO2, owing to the superior perovskite quality.
引用
收藏
页码:1155 / 1161
页数:7
相关论文
共 50 条
  • [21] Subphthalocyanine as hole transporting material for perovskite solar cells
    Sfyri, Georgia
    Kumar, Challuri Vijay
    Sabapathi, Gokulnath
    Giribabu, Lingamallu
    Andrikopoulos, Konstantinos S.
    Stathatos, Elias
    Lianos, Panagiotis
    RSC ADVANCES, 2015, 5 (85) : 69813 - 69818
  • [22] Titanylphthalocyanine as hole transporting material for perovskite solar cells
    Sun, Mengna
    Wang, Shirong
    Xiao, Yin
    Song, Zhihao
    Li, Xianggao
    JOURNAL OF ENERGY CHEMISTRY, 2015, 24 (06) : 756 - 761
  • [23] Titanylphthalocyanine as hole transporting material for perovskite solar cells
    Mengna Sun
    Shirong Wang
    Yin Xiao
    Zhihao Song
    Xianggao Li
    Journal of Energy Chemistry, 2015, 24 (06) : 756 - 761
  • [24] A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells
    Krishnamoorthy, Thirumal
    Fu Kunwu
    Boix, Pablo P.
    Li, Hairong
    Koh, Teck Ming
    Leong, Wei Lin
    Powar, Satvasheel
    Grimsdale, Andrew
    Graetzel, Michael
    Mathews, Nripan
    Mhaisalkar, Subodh G.
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (18) : 6305 - 6309
  • [25] Naphthodiperylenetetraimide-Based Polymer as Electron-Transporting Material for Efficient Inverted Perovskite Solar Cells
    Jiang, Kui
    Wu, Fei
    Zhu, Linna
    Yan, He
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (42) : 36549 - 36555
  • [26] What Should be Considered While Designing Hole-Transporting Material for Perovskite Solar Cells? A Special Attention to Thiophene-Based Hole-Transporting Materials
    Purushothaman, Palani
    Karpagam, Subramanian
    TOPICS IN CURRENT CHEMISTRY, 2024, 382 (02)
  • [27] Cost Effective Perovskite Solar Cell with Inorganic Hole-Transporting Material
    Kabir, Iqbal
    Sadik, Farhan
    Mahmood, Shaikh Asif
    2018 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2018, : 145 - 148
  • [28] Naphthalene-diimide selenophene copolymers as efficient solution-processable electron-transporting material for perovskite solar cells
    Yan, Weibo
    Wang, Zilong
    Gong, Yuancai
    Guo, Shigan
    Jiang, Jingjing
    Chen, Jianhua
    Tang, Chengcheng
    Xia, Ruidong
    Huang, Wei
    Xin, Hao
    ORGANIC ELECTRONICS, 2019, 67 : 208 - 214
  • [29] A dopant-free hole-transporting material for efficient and stable perovskite solar cells
    Liu, Jian
    Wu, Yongzhen
    Qin, Chuanjiang
    Yang, Xudong
    Yasuda, Takeshi
    Islam, Ashraful
    Zhang, Kun
    Peng, Wenqin
    Chen, Wei
    Han, Liyuan
    ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (09) : 2963 - 2967
  • [30] Nickel Cobaltite Nanosheet Layer as Hole-Transporting Material in Inverted Perovskite Solar Cells
    Li, Guodong
    Dong, Chunhua
    Wang, Rongbo
    CHEMISTRYSELECT, 2022, 7 (26):