On the central value of symmetric square L-functions

被引:21
|
作者
Blomer, Valentin [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
symmetric square L-function; nonvanishing; mollification; central value; Rankin-Selberg L-function;
D O I
10.1007/s00209-008-0299-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S-k(N, chi) be the space of cusp forms of weight k, level N and character chi. For f epsilon S-k (N, chi) let L(s, sym(2) f) be the symmetric square L-function and L(s, f circle times f) be the Rankin-Selberg square attached to f. For fixed k >= 2, N prime, and real primitive chi, asymptotic formulas for the first and second moment of the central value of L(s, sym(2) f) and L(s, f circle times f) over a basis of S-k (N, chi) are given as N -> infinity. As an application it is shown that a positive proportion of the central values L(1/2, sym(2) f) does not vanish.
引用
收藏
页码:755 / 777
页数:23
相关论文
共 50 条