UNIFORM STRICHARTZ ESTIMATES ON THE LATTICE

被引:8
|
作者
Hong, Younghun [1 ]
Yang, Changhun [2 ,3 ]
机构
[1] Chung Ang Univ, Dept Math, Seoul 06974, South Korea
[2] Korea Inst Adv Study, Seoul 20455, South Korea
[3] Chonbuk Natl Univ, Inst Pure & Appl Math, Jeonju 54896, South Korea
关键词
Discrete Schrodinger equation; discrete Klein-Gordon equation; Strichartz estimates; well-posedness; harmonic analysis on lattice; DISCRETE NONLINEAR SCHRODINGER; WAVE-GUIDE ARRAYS; DISPERSIVE PROPERTIES; SOLITONS; SCHEMES; CONVERGENCE; EQUATION;
D O I
10.3934/dcds.2019134
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate Strichartz estimates for discrete linear Schrodinger and discrete linear Klein-Gordon equations on a lattice hZ(d) with h > 0, where h is the distance between two adjacent lattice points. As for fixed h > 0, Strichartz estimates for discrete Schrodinger and one-dimensional discrete Klein-Gordon equations are established by Stefanov-Kevrekidis [21]. Our main result shows that such inequalities hold uniformly in h is an element of (0, 1] with additional fractional derivatives on the right hand side. As an application, we obtain local well-posedness of a discrete nonlinear Schrodinger equation with a priori bounds independent of h. The theorems and the harmonic analysis tools developed in this paper would be useful in the study of the continuum limit h -> 0 for discrete models, including our forthcoming work [7] where strong convergence for a discrete nonlinear Schrodinger equation is addressed.
引用
收藏
页码:3239 / 3264
页数:26
相关论文
共 50 条
  • [21] Strichartz estimates for long range perturbations
    Bouclet, Jean-Marc
    Tzvetkov, Nikolay
    AMERICAN JOURNAL OF MATHEMATICS, 2007, 129 (06) : 1565 - 1609
  • [22] Strichartz' estimates for kinetic transport equations
    Castella, F
    Perthame, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (06): : 535 - 540
  • [23] Dispersion and Strichartz estimates for the Liouville equation
    Salort, D
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (07) : 489 - 492
  • [24] On inhomogeneous Strichartz estimates for the Schrodinger equation
    Lee, Sanghyuk
    Seo, Ihyeok
    REVISTA MATEMATICA IBEROAMERICANA, 2014, 30 (02) : 711 - 726
  • [25] On bilinear Strichartz estimates on waveguides with applications
    Deng, Yangkendi
    Fan, Chenjie
    Yang, Kailong
    Zhao, Zehua
    Zheng, Jiqiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (09)
  • [26] Inhomogeneous Strichartz estimates for the Schrodinger equation
    Vilela, M. C.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (05) : 2123 - 2136
  • [27] Strichartz estimates in the frame of modulation spaces
    Zhang, Chunjie
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 78 : 156 - 167
  • [28] Strichartz estimates on the quaternion Heisenberg group
    Song, Naiqi
    Zhao, Jiman
    BULLETIN DES SCIENCES MATHEMATIQUES, 2014, 138 (02): : 293 - 315
  • [29] Strichartz estimates for the vibrating plate equation
    Elena Cordero
    Davide Zucco
    Journal of Evolution Equations, 2011, 11 : 827 - 845
  • [30] SHARP STRICHARTZ ESTIMATES IN SPHERICAL COORDINATES
    Schippa, Robert
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (06) : 2047 - 2051