Asymmetric PI3K Activity in Lymphocytes Organized by a PI3K-Mediated Polarity Pathway

被引:29
|
作者
Chen, Yen-Hua [1 ,2 ]
Kratchmarov, Radomir [1 ,2 ]
Lin, Wen-Hsuan W. [1 ,2 ]
Rothman, Nyanza J. [1 ,2 ]
Yen, Bonnie [1 ,2 ]
Adams, William C. [1 ,2 ]
Nish, Simone A. [1 ,2 ]
Rathmell, Jeffrey C. [3 ]
Reiner, Steven L. [1 ,2 ]
机构
[1] Columbia Univ, Dept Microbiol & Immunol, Vagelos Coll Phys & Surg, New York, NY 10032 USA
[2] Columbia Univ, Coll Phys & Surg, Dept Pediat, New York, NY 10032 USA
[3] Vanderbilt Univ, Med Ctr, Dept Pathol Microbiol & Immunol, Vanderbilt Ctr Immunobiol, Nashville, TN 37232 USA
来源
CELL REPORTS | 2018年 / 22卷 / 04期
关键词
T-CELL-ACTIVATION; SELF-RENEWAL; IMMUNOLOGICAL SYNAPSE; B-CELLS; DIFFERENTIATION; DIVISION; METABOLISM; RECEPTOR; ACCUMULATION; RESPONSES;
D O I
10.1016/j.celrep.2017.12.087
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Unequal transmission of nutritive signaling during cell division establishes fate disparity between sibling lymphocytes, but how asymmetric signaling becomes organized is not understood. We show that receptor-associated class I phosphatidylinositol 3-kinase (PI3K) signaling activity, indexed by phosphatidylinositol (3,4,5)-trisphosphate (PIP3) staining, is spatially restricted to the microtubule-organizing center and subsequently to one pole of the mitotic spindle in activated T and B lymphocytes. Asymmetric PI3K activity co-localizes with polarization of antigen receptor components implicated in class I PI3K signaling and with facultative glucose transporters whose trafficking is PI3K dependent and whose abundance marks cells destined for differentiation. Perturbation of class I PI3K activity disrupts asymmetry of upstream antigen receptors and downstream glucose transporter traffic. The roles of PI3K signaling in nutrient utilization, proliferation, and gene expression may have converged with the conserved role of PI3K signaling in cellular symmetry breaking to form a logic for regenerative lymphocyte divisions.
引用
收藏
页码:860 / 868
页数:9
相关论文
共 50 条
  • [41] Targeting the PI3K Pathway in Gynecologic Malignancies
    Monica Avila
    Michaela Onstad Grinsfelder
    Melissa Pham
    Shannon N. Westin
    Current Oncology Reports, 2022, 24 : 1669 - 1676
  • [42] PI3K/Akt signalling pathway and cancer
    Vara, JAF
    Casado, E
    de Castro, J
    Cejas, P
    Belda-Iniesta, C
    González-Barón, M
    CANCER TREATMENT REVIEWS, 2004, 30 (02) : 193 - 204
  • [43] Targeting the PI3K pathway in myeloproliferative neoplasms
    Gerds, Aaron T.
    Bartalucci, Niccolo
    Assad, Albert
    Yacoub, Abdulraheem
    EXPERT REVIEW OF ANTICANCER THERAPY, 2022, 22 (08) : 835 - 843
  • [44] PI3K pathway inhibitors approach junction
    David Holmes
    Nature Reviews Drug Discovery, 2011, 10 : 563 - 564
  • [45] The PI3K/Akt/mTOR signaling pathway
    Dennis, P. A.
    ANNALS OF ONCOLOGY, 2011, 22 : 19 - 19
  • [46] A new mutational aktivation in the PI3K pathway
    Brugge, Joan
    Hung, Mien-Chie
    Mills, Gordon B.
    CANCER CELL, 2007, 12 (02) : 104 - 107
  • [47] Targeting the PI3K Pathway in Gynecologic Malignancies
    Avila, Monica
    Grinsfelder, Michaela Onstad
    Pham, Melissa
    Westin, Shannon N.
    CURRENT ONCOLOGY REPORTS, 2022, 24 (12) : 1669 - 1676
  • [48] Targeting the PI3K signaling pathway in cancer
    Wong, Kwok-Kin
    Engelman, Jeffrey A.
    Cantley, Lewis C.
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2010, 20 (01) : 87 - 90
  • [49] Drugging the PI3K pathway in cancer.
    Workman, P
    CLINICAL CANCER RESEARCH, 2003, 9 (16) : 6276S - 6277S
  • [50] The PI3K Pathway: Background and Treatment Approaches
    Lux, Michael P.
    Fasching, Peter A.
    Schrauder, Michael G.
    Hein, Alexander
    Jud, Sebastian M.
    Rauh, Claudia
    Beckmann, Matthias W.
    BREAST CARE, 2016, 11 (06) : 398 - 404