Linear optical properties in the projector-augmented wave methodology -: art. no. 045112

被引:2734
|
作者
Gajdos, M
Hummer, K
Kresse, G
Furthmüller, J
Bechstedt, F
机构
[1] Univ Vienna, Inst Mat Phys, A-1090 Vienna, Austria
[2] Univ Vienna, Ctr Computat Mat Sci, A-1090 Vienna, Austria
[3] Univ Jena, Inst Festkorpertheorie & Theoret Opt, D-07743 Jena, Germany
基金
奥地利科学基金会;
关键词
D O I
10.1103/PhysRevB.73.045112
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work we derive closed expressions for the head of the frequency-dependent microscopic polarizability matrix in the projector-augmented wave (PAW) methodology. Contrary to previous applications, the longitudinal expression is utilized, resulting in dielectric properties that are largely independent of the applied potentials. The improved accuracy of the present approach is demonstrated by comparing the longitudinal and transversal expressions of the polarizability matrix for a number of cubic semiconductors and one insulator, i.e., Si, SiC, AlP, GaAs, and diamond (C), respectively. The methodology is readily extendable to more complicated nonlocal Hamiltonians or to the calculation of the macroscopic dielectric matrix including local field effects in the random phase or density functional approximation, which is demonstrated for the previously mentioned model systems. Furthermore, density functional perturbation theory is extended to the PAW method, and the respective results are compared to those obtained by summation over the conduction band states.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Optical response for the d-density-wave model -: art. no. 134503
    Valenzuela, B
    Nicol, EJ
    Carbotte, JP
    PHYSICAL REVIEW B, 2005, 71 (13):
  • [22] Wave front sensing of an optical vortex - art. no. 63463U
    Starikov, F. A.
    Aksenov, V. P.
    Izmailov, I. V.
    Kanev, F. Yu.
    Kochemasov, G. G.
    Kulikov, S. M.
    Manachinsky, A. N.
    Maslov, N. V.
    Ogorodnikov, A. V.
    Sukharev, S. A.
    XVI International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, Pts 1 and 2, 2007, 6346 : U3463 - U3463
  • [23] Optical properties of ZnI2 films -: art. no. 245406
    Tyagi, P
    Vedeshwar, AG
    PHYSICAL REVIEW B, 2001, 64 (24)
  • [24] Exciton states and optical properties of CdSe nanocrystals -: art. no. 245318
    Pérez-Conde, J
    Bhattacharjee, AK
    PHYSICAL REVIEW B, 2001, 63 (24):
  • [25] Influence of oxygen on optical properties of Si nanocrystallites -: art. no. 143113
    Ramos, LE
    Furthmüller, J
    Bechstedt, F
    APPLIED PHYSICS LETTERS, 2005, 87 (14) : 1 - 3
  • [26] Calculations of optical properties in strongly correlated materials -: art. no. 125112
    Oudovenko, VS
    Pálsson, G
    Savrasov, SY
    Haule, K
    Kotliar, G
    PHYSICAL REVIEW B, 2004, 70 (12): : 125112 - 1
  • [27] Linear wave-number spectrometer for spectral domain optical coherence tomography - art. no. 68470N
    Gelikonov, Grigory V.
    Gelikonov, Valentin M.
    Shilyagin, Pavel A.
    COHERENCE DOMAIN OPTICAL METHODS AND OPTICAL COHERENCE TOMOGRAPHY IN BIOMEDICINE XII, 2008, 6847 : N8470 - N8470
  • [28] Solid-state optical properties of linear polyconjugated molecules:: π-stack contra herringbone -: art. no. 144914
    Gierschner, J
    Ehni, M
    Egelhaaf, HJ
    Milian Medina, B
    Beljonne, D
    Benmansour, H
    Bazan, GC
    JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (14):
  • [29] Self-consistent Hubbard parameters from density-functional perturbation theory in the ultrasoft and projector-augmented wave formulations
    Timrov, Iurii
    Marzari, Nicola
    Cococcioni, Matteo
    PHYSICAL REVIEW B, 2021, 103 (04)
  • [30] Optical Bragg accelerators -: art. no. 016505
    Mizrahi, A
    Schächter, L
    PHYSICAL REVIEW E, 2004, 70 (01):