Resolutions of general canonical curves on rational normal scrolls

被引:6
|
作者
Bopp, Christian [1 ]
Hoff, Michael [1 ]
机构
[1] Univ Saarland, D-66123 Saarbrucken, Germany
关键词
Syzygy modules; Relative canonical resolution; Balancedness; LINEAR SERIES;
D O I
10.1007/s00013-015-0794-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C subset of Pg-1 be a general curve of genus g, and let k be a positive integer such that the Brill-Noether number rho(g, k, 1) >= 0 and g > k + 1. The aim of this short note is to study the relative canonical resolution of C on a rational normal scroll swept out by a g(k)(1) = vertical bar L vertical bar with L is an element of W-k(1)(C) general. We show that the bundle of quadrics appearing in the relative canonical resolution is unbalanced if and only if rho > 0 and (k - rho - 7/2)(2) - 2k + 23/4 > 0.
引用
收藏
页码:239 / 249
页数:11
相关论文
共 50 条
  • [21] On gonality, scrolls, and canonical models of non-Gorenstein curves
    Renato Vidal Martins
    Danielle Lara
    Jairo Menezes Souza
    Geometriae Dedicata, 2019, 203 : 111 - 133
  • [22] BINOMIAL EDGE IDEALS AND RATIONAL NORMAL SCROLLS
    Chaudhry, F.
    Dokuyucu, A.
    Ene, V.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (04) : 971 - 979
  • [23] Chebyshev curves, free resolutions and rational curve arrangements
    Dimca, Alexandru
    Sticlaru, Gabriel
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 153 : 385 - 397
  • [24] On gonality and canonical models of unicuspidal rational curves
    Naamã Galdino
    Renato Vidal Martins
    Danielle Nicolau
    Semigroup Forum, 2023, 107 : 79 - 108
  • [25] On gonality and canonical models of unicuspidal rational curves
    Galdino, Naama
    Martins, Renato Vidal
    Nicolau, Danielle
    SEMIGROUP FORUM, 2023, 107 (01) : 79 - 108
  • [26] Construction and resolutions of certain projectively normal curves
    Catalisano, MV
    Gimigliano, A
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 135 (03) : 225 - 236
  • [27] Fiber cones of rational normal scrolls are Cohen–Macaulay
    Kuei-Nuan Lin
    Yi-Huang Shen
    Journal of Algebraic Combinatorics, 2022, 56 : 547 - 563
  • [28] Rational normal scrolls and the defining equations of Rees algebras
    Kustin, Andrew R.
    Polini, Claudia
    Ulrich, Bernd
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 650 : 23 - 65
  • [29] Nuclei of normal rational curves
    Gmainer J.
    Havlicek H.
    Journal of Geometry, 2000, 69 (1-2) : 117 - 130
  • [30] Completeness of normal rational curves
    Storme, L.
    Journal of Algebraic Combinatorics, 1992, 1 (02)