STOMP: Stochastic Trajectory Optimization for Motion Planning

被引:0
|
作者
Kalakrishnan, Mrinal [1 ]
Chitta, Sachin [2 ]
Theodorou, Evangelos [1 ]
Pastor, Peter [1 ]
Schaal, Stefan [1 ]
机构
[1] Univ Southern Calif, CLMC Lab, Los Angeles, CA USA
[2] Willow Garage Inc, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a new approach to motion planning using a stochastic trajectory optimization framework. The approach relies on generating noisy trajectories to explore the space around an initial (possibly infeasible) trajectory, which are then combined to produced an updated trajectory with lower cost. A cost function based on a combination of obstacle and smoothness cost is optimized in each iteration. No gradient information is required for the particular optimization algorithm that we use and so general costs for which derivatives may not be available (e.g. costs corresponding to constraints and motor torques) can be included in the cost function. We demonstrate the approach both in simulation and on a mobile manipulation system for unconstrained and constrained tasks. We experimentally show that the stochastic nature of STOMP allows it to overcome local minima that gradient-based methods like CHOMP can get stuck in.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Stochastic Trajectory Planning for Autonomous Aerobraking Using Convex Optimization and Covariance Control
    Zhao, Zichen
    Shang, Haibin
    Yu, Zhitong
    Ren, Junjie
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2024, 47 (08) : 1521 - 1541
  • [22] Kinodynamic motion planning:: Connecting exploration trees using trajectory optimization methods
    Lamiraux, F
    Ferré, E
    Vallée, E
    2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, : 3987 - 3992
  • [23] Long-Horizon Motion Planning via Sampling and Segmented Trajectory Optimization
    Leu, Jessica
    Wang, Michael
    Tomizuka, Masayoshi
    2022 EUROPEAN CONTROL CONFERENCE (ECC), 2022, : 538 - 545
  • [24] Stochastic Optimization for Motion Planning of Helicopter and Underwater Vehicles Reposition Task
    Maggio, Dominic
    Tehrani, Navid Dadkhah
    Cherepinsky, Igor
    Carlson, Sean
    2021 IEEE AEROSPACE CONFERENCE (AEROCONF 2021), 2021,
  • [25] Trajectory Optimization with Geometry-Aware Singularity Avoidance for Robot Motion Planning
    Petrovic, Luka
    Maric, Filip
    Markovic, Ivan
    Kelly, Jonathan
    Petrovic, Ivan
    2021 21ST INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2021), 2021, : 1760 - 1765
  • [26] Autonomous Vehicle Motion Planning Based on Improved RRT* Algorithm and Trajectory Optimization
    Yuan J.-N.
    Yang L.
    Tang X.-F.
    Chen A.-W.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (12): : 2941 - 2950
  • [27] Adaptive stochastic trajectory planning for robots
    Qu, S.
    Marti, K.
    Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 78 (Suppl 3):
  • [28] Motion Trajectory Planning of Biped Robots
    Zhang, Chenxi
    Li, Junjian
    Xue, Bingxin
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 727 - 730
  • [29] Trajectory Scaling for Reactive Motion Planning
    Dahlin, Albin
    Karayiannidis, Yiannis
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 5242 - 5248
  • [30] Motion Planning With Flexible Trajectory Chains
    Simon, Bruno
    Riegl, Peter
    Gaull, Andreas
    2018 IEEE INTERNATIONAL CONFERENCE ON VEHICULAR ELECTRONICS AND SAFETY (ICVES 2018), 2018,