Residual stress prediction based on MTS model during machining of Ti-6Al-4V

被引:10
|
作者
Pan, Zhipeng [1 ]
Liang, Steven Y. [1 ]
Garmestani, Hamid [2 ]
Shih, Donald [3 ]
Hoar, Eric [2 ]
机构
[1] Georgia Inst Technol, Woodruff Sch Mech Engn, 801 Ferst Dr, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Kumamoto Univ, Magnesium Res Ctr, Kumamoto, Japan
关键词
MTS; residual stress; machining; titanium; microstructure; modeling; CHIP FORMATION; PHASE-TRANSFORMATION; ALLOY; DEFORMATION; TEMPERATURE; SIMULATION;
D O I
10.1177/0954406218805122
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The material microstructure attributes are largely ignored in the machining community for the machining mechanics modeling. A physical-based mechanical threshold stress (MTS) model is proposed for the orthogonal turning application of Ti-6Al-4V material. The MTS model takes the material internal state variables, such as dislocation to dislocation interaction and dislocation/interstitial resistance, into the flow stress consideration. The MTS model is embedded into an analytical residual stress prediction model for machining induced residual stress prediction. The experimental data are provided for the model validation. The prediction generally captures the trend of the residual stress profile compared with experiments. The proposed model provides a microstructure insight of the workpiece material in the machining process modeling.
引用
收藏
页码:3743 / 3750
页数:8
相关论文
共 50 条
  • [41] Machining mechanism and stress model in cutting Ti6Al4V
    Wu, Shujing
    Chen, Feiyang
    Wang, Dazhong
    Wang, Guoqiang
    Li, Changhe
    Lu, Jinzhong
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 131 (5-6): : 2625 - 2639
  • [42] Characterization of residual stresses in heat treated Ti-6Al-4V forgings by machining induced distortion
    Regener, B.
    Krempaszky, C.
    Werner, E.
    ICEM 14: 14TH INTERNATIONAL CONFERENCE ON EXPERIMENTAL MECHANICS, VOL 6, 2010, 6
  • [43] Material flow stress and failure in multiscale machining titanium alloy Ti-6Al-4V
    Sun, J.
    Guo, Y. B.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2009, 41 (7-8): : 651 - 659
  • [44] Evaluation of a thermomechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V (vol 27, pg 489, 2019)
    Ganeriwala, R. K.
    Strantza, M.
    King, W. E.
    Clausen, B.
    Phan, T. Q.
    Levine, L. E.
    Brown, D. W.
    Hodge, N. E.
    ADDITIVE MANUFACTURING, 2020, 32
  • [45] Material flow stress and failure in multiscale machining titanium alloy Ti-6Al-4V
    J. Sun
    Y. B. Guo
    The International Journal of Advanced Manufacturing Technology, 2009, 41 : 651 - 659
  • [46] Methodology for prediction of sub-surface residual stress in micro end milling of Ti-6Al-4V alloy
    Rahul, Y.
    Vipindas, K.
    Mathew, Jose
    JOURNAL OF MANUFACTURING PROCESSES, 2021, 62 (62) : 600 - 612
  • [47] Preliminary Study on Machining of Additively Manufactured Ti-6Al-4V
    Jay K. Raval
    Aamer A. Kazi
    Xiangyu Guo
    Ryan Zvanut
    Chabum Lee
    Bruce L. Tai
    JOM, 2022, 74 : 1120 - 1125
  • [48] An experimental study of abrasive waterjet machining of Ti-6Al-4V
    Huaizhong Li
    Jun Wang
    The International Journal of Advanced Manufacturing Technology, 2015, 81 : 361 - 369
  • [49] Fiber Laser Micro-machining of Ti-6Al-4V
    Sen, A.
    Doloi, B.
    Bhattacharyya, B.
    LASERS BASED MANUFACTURING, 2015, : 255 - 281
  • [50] Machining of Titanium Alloy (Ti-6Al-4V)-Theory to Application
    Pramanik, Alokesh
    Littlefair, Guy
    MACHINING SCIENCE AND TECHNOLOGY, 2015, 19 (01) : 1 - 49