Online deconvolution for pushbroom hyperspectral imaging systems

被引:0
|
作者
Song, Yingying [1 ]
Djermoune, El-Hadi [1 ]
Chen, Jie [2 ]
Richard, Cedric [3 ]
Brie, David [1 ]
机构
[1] Univ Lorraine, CRAN, CNRS, Vandoeuvre Les Nancy, France
[2] Northwestern Polytech Univ, Xian, Shaanxi, Peoples R China
[3] Univ Cote Azur, CNRS, OCA, Nice, France
关键词
POSITIVE DECONVOLUTION; RESTORATION; ALGORITHM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces a framework based on the LMS algorithm for sequential deconvolution of hyperspectral images acquired by industrial pushbroom imaging systems. Considering a sequential model of image blurring phenomenon, we derive a sliding-block zero-attracting LMS algorithm with spectral regularization. The role of each hyper-parameter is discussed. The performance of the algorithm is evaluated using real hyperspectral data.
引用
下载
收藏
页数:5
相关论文
共 50 条
  • [41] Point spread function estimation with computed wavefronts for deconvolution of hyperspectral imaging data
    Miroslav Zabic
    Michel Reifenrath
    Charlie Wegner
    Hans Bethge
    Timm Landes
    Sophia Rudorf
    Dag Heinemann
    Scientific Reports, 15 (1)
  • [42] Hyperspectral Imaging as a Potential Online Detection Method of Microplastics
    Huang, Hui
    Qureshi, Junaid Ullah
    Liu, Shuchang
    Sun, Zehao
    Zhang, Chunfang
    Wang, Hangzhou
    BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2021, 107 (04) : 754 - 763
  • [43] A way to realize the wide field of view pushbroom hyperspectral imager
    Hu, PX
    Lu, QM
    Cheng, YW
    Shu, R
    Wang, JY
    ICO20: REMOTE SENSING AND INFRARED DEVICES AND SYSTEMS, 2006, 6031
  • [44] Comparative performance studies between tunable filter and pushbroom chemical imaging systems
    Malinen, Jouko
    Saari, Heikki
    Kemeny, Gabor
    Shi, Zhenqi
    Anderson, Carl
    NEXT-GENERATION SPECTROSCOPIC TECHNOLOGIES III, 2010, 7680
  • [45] Detection Algorithms in Hyperspectral Imaging Systems
    Manolakis, Dimitris
    Truslow, Eric
    Pieper, Michael
    Cooley, Thomas
    Brueggeman, Michael
    IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) : 24 - 33
  • [46] Identifying Leaf-Scale Wheat Aphids Using the Near-Ground Hyperspectral Pushbroom Imaging Spectrometer
    Zhao, Jinling
    Zhang, Dongyan
    Luo, Juhua
    Wang, Dacheng
    Huang, Wenjiang
    COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE V, PT II, 2012, 369 : 275 - 282
  • [47] Hyperspectral imaging utility for transportation systems
    Bridgelall, Raj
    Rafert, J. Bruce
    Tolliver, Denver
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2015, 2015, 9435
  • [48] Advances in spaceborne hyperspectral imaging systems
    Kumar, K. Ajay
    Thapa, Nitesh
    Kuriakose, Saji A.
    CURRENT SCIENCE, 2015, 108 (05): : 826 - 832
  • [49] Information efficiency in hyperspectral imaging systems
    Reichenbach, SE
    Cao, LY
    Narayanan, RM
    JOURNAL OF ELECTRONIC IMAGING, 2002, 11 (03) : 347 - 353
  • [50] Dual-mode pushbroom hyperspectral imaging using active system components and feed-forward compensation
    Abdo, Mohammad
    Foerster, Erik
    Bohnert, Patrick
    Badilita, Vlad
    Brunner, Robert
    Wallrabe, Ulrike
    Korvink, Jan G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (08):