Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production

被引:57
|
作者
Kumar, Deepak [1 ]
Murthy, Ganti S. [1 ]
机构
[1] Oregon State Univ, Corvallis, OR 97331 USA
来源
基金
美国国家科学基金会;
关键词
Cellulose hydrolysis; Bioethanol; Hydrolysis modeling; Cellulase; Synergism; Exo-cellulase; Endo-cellulase; MONTE-CARLO-SIMULATION; LIGNOCELLULOSIC BIOMASS; BACTERIAL CELLULOSE; CELLOBIOHYDROLASE I; TRICHODERMA-REESEI; SYNERGISTIC ACTION; STARCH HYDROLYSIS; ALPHA-AMYLOLYSIS; POTATO STARCH; PRETREATMENT;
D O I
10.1186/1754-6834-6-63
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: During cellulosic ethanol production, cellulose hydrolysis is achieved by synergistic action of cellulase enzyme complex consisting of multiple enzymes with different mode of actions. Enzymatic hydrolysis of cellulose is one of the bottlenecks in the commercialization of the process due to low hydrolysis rates and high cost of enzymes. A robust hydrolysis model that can predict hydrolysis profile under various scenarios can act as an important forecasting tool to improve the hydrolysis process. However, multiple factors affecting hydrolysis: cellulose structure and complex enzyme-substrate interactions during hydrolysis make it diffucult to develop mathematical kinetic models that can simulate hydrolysis in presence of multiple enzymes with high fidelity. In this study, a comprehensive hydrolysis model based on stochastic molecular modeling approch in which each hydrolysis event is translated into a discrete event is presented. The model captures the structural features of cellulose, enzyme properties (mode of actions, synergism, inhibition), and most importantly dynamic morphological changes in the substrate that directly affect the enzyme-substrate interactions during hydrolysis. Results: Cellulose was modeled as a group of microfibrils consisting of elementary fibrils bundles, where each elementary fibril was represented as a three dimensional matrix of glucose molecules. Hydrolysis of cellulose was simulated based on Monte Carlo simulation technique. Cellulose hydrolysis results predicted by model simulations agree well with the experimental data from literature. Coefficients of determination for model predictions and experimental values were in the range of 0.75 to 0.96 for Avicel hydrolysis by CBH I action. Model was able to simulate the synergistic action of multiple enzymes during hydrolysis. The model simulations captured the important experimental observations: effect of structural properties, enzyme inhibition and enzyme loadings on the hydrolysis and degree of synergism among enzymes. Conclusions: The model was effective in capturing the dynamic behavior of cellulose hydrolysis during action of individual as well as multiple cellulases. Simulations were in qualitative and quantitative agreement with experimental data. Several experimentally observed phenomena were simulated without the need for any additional assumptions or parameter changes and confirmed the validity of using the stochastic molecular modeling approach to quantitatively and qualitatively describe the cellulose hydrolysis.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Optimization of enzymatic hydrolysis of pretreated rice straw and ethanol production
    Singh, Anita
    Bishnoi, Narsi R.
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 93 (04) : 1785 - 1793
  • [32] PRODUCTION OF FUEL ETHANOL BY ENZYMATIC-HYDROLYSIS OF CELLULOSIC BIOMASS
    GROHMANN, K
    HIMMEL, ME
    HINMAN, N
    WYMAN, CE
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1990, 200 : 52 - CELL
  • [33] Enzymatic hydrolysis optimization to ethanol production by simultaneous saccharification and fermentation
    Vasquez, Mariana Penuela
    da Silva, Juliana Nascimento C.
    de Souza, Mauricio Bezerra, Jr.
    Pereira, Nei, Jr.
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2007, 137 (1-12) : 141 - 153
  • [34] Enzymatic hydrolysis optimization to ethanol production by simultaneous saccharification and fermentation
    Mariana Peñuela Vásquez
    Juliana Nascimento C. da Silva
    Maurício Bezerra de Souza
    Nei Pereira
    Applied Biochemistry and Biotechnology, 2007, 137-140 : 141 - 153
  • [35] Enzymatic Hydrolysis of Waste Cellulose
    Mandels, Mary
    Hontz, Lloyd
    Nystrom, John
    BIOTECHNOLOGY AND BIOENGINEERING, 2010, 105 (01) : 3 - 25
  • [36] Enzymatic hydrolysis of cellulose hydrates
    Kobayashi, Kayoko
    Kimura, Satoshi
    Kim, Ung-Jin
    Tokuyasu, Ken
    Wada, Masahisa
    CELLULOSE, 2012, 19 (03) : 967 - 974
  • [37] Enzymatic hydrolysis of bacterial cellulose
    Samejima, M
    Sugiyama, J
    Igarashi, K
    Eriksson, KEL
    CARBOHYDRATE RESEARCH, 1997, 305 (02) : 281 - 288
  • [38] Enzymatic hydrolysis of cellulose hydrates
    Kayoko Kobayashi
    Satoshi Kimura
    Ung-Jin Kim
    Ken Tokuyasu
    Masahisa Wada
    Cellulose, 2012, 19 : 967 - 974
  • [39] ENZYMATIC-HYDROLYSIS OF CELLULOSE
    ESTERBAUER, H
    JUNGSCHAFFER, G
    SCHURZ, J
    HOLZFORSCHUNG, 1981, 35 (03) : 129 - 135
  • [40] ENZYMATIC-HYDROLYSIS OF CELLULOSE
    HARANO, Y
    OOSHIMA, H
    OHMINE, K
    SAKATA, M
    ENZYME ENGINEERING, 1982, 6 : 349 - 350