INFERENCE OF GENETIC REGULATORY NETWORKS USING REGULARIZED LIKELIHOOD WITH COVARIANCE ESTIMATION

被引:0
|
作者
Rasool, Ghulam [1 ]
Bouaynaya, Nidhal [1 ]
Fathallah-Shaykh, Hassan M. [2 ]
Schonfeld, Dan [3 ]
机构
[1] Univ Arkansas, Dept Syst Engn, Little Rock, AR 72204 USA
[2] Univ Alabama Birmingham, Dept Neurol, Birmingham, AL USA
[3] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL USA
基金
美国国家科学基金会;
关键词
Gene regulatory network; multivariate regression; maximum likelihood estimation; convex optimization; COMPOUND-MODE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We cast the problem of reverse-engineering the connectivity matrix of genetic regulatory networks from a limited number of measurements as a regularized multivariate regression problem. The regularization term incorporates the prior knowledge of sparsity of genetic regulatory networks. Moreover, the genetic profiles within a measurement are assumed to be correlated with a full covariance structure. The proposed algorithm computes a sparse estimate of the connectivity matrix that accounts for correlated errors using regularized likelihood. We show that the joint estimation of the connectivity and covariance matrices improves the estimation of the network connectivity as compared to the assumption of uncorrelated measurements. Our algorithm has ln(ln(N)) sampling complexity. We test and validate our approach using synthetically generated networks.
引用
收藏
页码:560 / 563
页数:4
相关论文
共 50 条
  • [32] Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization
    Xu, Rui
    Wunsch, Donald C., II
    Frank, Ronald L.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2007, 4 (04) : 681 - 692
  • [33] Genetic Regulatory Network Inference using Recurrent Neural Networks trained by a Multi Agent System
    Ghazikhani, Adel
    Akbarzadeh, Mohammad Reza
    Monsefi, Reza
    [J]. 2011 1ST INTERNATIONAL ECONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2011, : 95 - 99
  • [34] Automated inference of gene regulatory networks using explicit regulatory modules
    Reda, Clemence
    Wilczynski, Bartek
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2020, 486
  • [35] Maximum likelihood estimation of spatial covariance parameters
    Pardo-Iguzquiza, E
    [J]. MATHEMATICAL GEOLOGY, 1998, 30 (01): : 95 - 108
  • [36] USING MULTIVARIATE ANALYSIS OF COVARIANCE IN GENETIC PARAMETER ESTIMATION
    Eltas, Omer
    Topal, Mehmet
    [J]. FRESENIUS ENVIRONMENTAL BULLETIN, 2022, 31 (02): : 2015 - 2024
  • [37] Covariance Analysis of Maximum Likelihood Attitude Estimation
    Joanna C. Hinks
    John L. Crassidis
    [J]. The Journal of the Astronautical Sciences, 2013, 60 : 186 - 210
  • [38] Regularized Covariance Matrix Estimation via Empirical Bayes
    Coluccia, Angelo
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (11) : 2127 - 2131
  • [39] Covariance Analysis of Maximum Likelihood Attitude Estimation
    Hinks, Joanna C.
    Crassidis, John L.
    [J]. JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2013, 60 (02): : 186 - 210
  • [40] Maximum Likelihood Estimation of Spatial Covariance Parameters
    Eulogio Pardo-Igúzquiza
    [J]. Mathematical Geology, 1998, 30 : 95 - 108