Individual patient data meta-analysis of survival data using Poisson regression models

被引:68
|
作者
Crowther, Michael J. [2 ]
Riley, Richard D. [1 ]
Staessen, Jan A. [3 ,4 ]
Wang, Jiguang [5 ]
Gueyffier, Francois [6 ]
Lambert, Paul C. [2 ,7 ]
机构
[1] Univ Birmingham, Sch Hlth & Populat Sci, Birmingham B15 2TT, W Midlands, England
[2] Univ Leicester, Dept Hlth Sci, Ctr Biostat & Genet Epidemiol, Leicester LE1 7RH, Leics, England
[3] Univ Leuven, Dept Cardiovasc Res, Studies Coordinating Ctr, Div Hypertens & Cardiovasc Rehabil, BE-3000 Louvain, Belgium
[4] Maastricht Univ, Dept Epidemiol, NL-6200 MD Maastricht, Netherlands
[5] Shanghai Jiao Tong Univ, Ruijin Hosp, Ctr Epidemiol Studies & Clin Trials, Shanghai 200025, Peoples R China
[6] INSERM, CIC201, F-69000 Lyon, France
[7] Karolinska Inst, Dept Med Epidemiol & Biostat, S-17177 Stockholm, Sweden
来源
关键词
PARTICIPANT DATA; META-REGRESSION; TIME; HETEROGENEITY; HAZARDS; TRIALS; FRAMEWORK; LEVEL; BIAS;
D O I
10.1186/1471-2288-12-34
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: An Individual Patient Data (IPD) meta-analysis is often considered the gold-standard for synthesising survival data from clinical trials. An IPD meta-analysis can be achieved by either a two-stage or a one-stage approach, depending on whether the trials are analysed separately or simultaneously. A range of one-stage hierarchical Cox models have been previously proposed, but these are known to be computationally intensive and are not currently available in all standard statistical software. We describe an alternative approach using Poisson based Generalised Linear Models (GLMs). Methods: We illustrate, through application and simulation, the Poisson approach both classically and in a Bayesian framework, in two-stage and one-stage approaches. We outline the benefits of our one-stage approach through extension to modelling treatment-covariate interactions and non-proportional hazards. Ten trials of hypertension treatment, with all-cause death the outcome of interest, are used to apply and assess the approach. Results: We show that the Poisson approach obtains almost identical estimates to the Cox model, is additionally computationally efficient and directly estimates the baseline hazard. Some downward bias is observed in classical estimates of the heterogeneity in the treatment effect, with improved performance from the Bayesian approach. Conclusion: Our approach provides a highly flexible and computationally efficient framework, available in all standard statistical software, to the investigation of not only heterogeneity, but the presence of non-proportional hazards and treatment effect modifiers.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Racecadotril for childhood gastroenteritis: an individual patient data meta-analysis
    Lehert, Philippe
    Cheron, Gerard
    Alvarez Calatayud, Guillermo
    Cezard, Jean-Pierre
    Gutierrez Castrellon, Pedro
    Melendez Garcia, Jose-Manuel
    Santos, Mar
    Savitha, M. R.
    DIGESTIVE AND LIVER DISEASE, 2011, 43 (09) : 707 - 713
  • [42] Acupuncture for Chronic Pain: Individual Patient Data Meta-analysis
    Cramer, Holger
    Vickers, A. J.
    Cronin, A. M.
    Maschino, A. C.
    Lewith, G.
    MacPherson, H.
    Foster, N. E.
    Sherman, K. J.
    Witt, C. M.
    Linde, K.
    DEUTSCHE ZEITSCHRIFT FUR AKUPUNKTUR, 2012, 55 (04): : 24 - 25
  • [43] Risk of Fracture with Thiazolidinediones: An Individual Patient Data Meta-Analysis
    Bazelier, Marloes T.
    de Vries, Frank
    Vestergaard, Peter
    Herings, Ron M. C.
    Gallagher, Arlene M.
    Leufkens, Hubert G. M.
    van Staa, Tjeerd-Pieter
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2013, 22 : 286 - 287
  • [44] The devil is in the details ... or not? A primer on individual patient data meta-analysis
    Sud, Sachin
    Douketis, James
    ANNALS OF INTERNAL MEDICINE, 2009, 151 (02)
  • [45] Laparoscopic versus open hepatectomy for intrahepatic cholangiocarcinoma: An individual patient data survival meta-analysis
    Ziogas, Ioannis A.
    Esagian, Stepan M.
    Giannis, Dimitrios
    Hayat, Muhammad H.
    Kosmidis, Dimitrios
    Matsuoka, Lea K.
    Montenovo, Martin, I
    Tsoulfas, Georgios
    Geller, David A.
    Alexopoulos, Sophoclis P.
    AMERICAN JOURNAL OF SURGERY, 2021, 222 (04): : 731 - 738
  • [46] Effect of Amifostine on Survival Among Patients Treated With Radiotherapy: A Meta-Analysis of Individual Patient Data
    Bourhis, Jean
    Blanchard, Pierre
    Maillard, Emilie
    Brizel, David M.
    Movsas, Benjamin
    Buentzel, Jens
    Langendijk, Johannes A.
    Komaki, Ritsuko
    Leong, Swan Swan
    Levendag, Peter
    Pignon, Jean Pierre
    JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (18) : 2590 - 2597
  • [47] Stroke Risk in Head and Neck Cancer: A Meta-analysis of Reconstructed Individual Patient Survival Data
    Liew, Eda
    Tan, Jing Xuan
    Low, Chen Ee
    Goh, Doreen Shu Lin
    Gao, Esther Yanxin
    Teo, Yao Hao
    de Groot, Emilie C. M.
    Senff, Jasper
    Sia, Ching-Hui
    Yeo, Leonard Leong Litt
    See, Anna
    Tan, Benjamin Kye Jyn
    Tan, Benjamin Yong-Qiang
    OTOLARYNGOLOGY-HEAD AND NECK SURGERY, 2025,
  • [48] Survival outcomes of intracranial extraventricular neurocytomas: a systematic review and individual patient data meta-analysis
    Kweh, Barry Ting Sheen
    Asaid, Mina
    Khoo, Boyuan
    Donaldson, Christopher
    Lokan, Julie
    Gan, Hui K.
    Gonzalvo, Augusto Carlos
    JOURNAL OF NEUROSURGERY, 2024, 140 (05) : 1243 - 1253
  • [49] Comparison of meta-analysis versus analysis of variance of individual patient data
    Olkin, I.
    Sampson, A.
    Biometrics, 54 (01):
  • [50] Multivariate meta-analysis using individual participant data
    Riley, R. D.
    Price, M. J.
    Jackson, D.
    Wardle, M.
    Gueyffier, F.
    Wang, J.
    Staessen, J. A.
    White, I. R.
    RESEARCH SYNTHESIS METHODS, 2015, 6 (02) : 157 - 174