COMPUTING L-FUNCTIONS AND SEMISTABLE REDUCTION OF SUPERELLIPTIC CURVES

被引:18
|
作者
Bouw, Irene I. [1 ]
Wewers, Stefan [1 ]
机构
[1] Univ Ulm, Inst Reine Math, Helmholtzstr 18, D-89081 Ulm, Germany
关键词
HYPERELLIPTIC CURVES; MODULI SPACE; DISCRIMINANT; CONDUCTOR; MODELS;
D O I
10.1017/S0017089516000057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an explicit description of the stable reduction of superelliptic curves of the form y(n) = f(x) at primes p whose residue characteristic is prime to the exponent n. We then use this description to compute the local L-factor and the exponent of conductor at p of the curve.
引用
收藏
页码:77 / 108
页数:32
相关论文
共 50 条
  • [11] L-FUNCTIONS OF ELLIPTIC CURVES AND FIBONACCI NUMBERS
    Luca, Florian
    Yalciner, Aynur
    FIBONACCI QUARTERLY, 2013, 51 (02): : 112 - 118
  • [12] The universality of the derivatives of L-functions of elliptic curves
    Garbaliauskiene, V.
    Laurincikas, A.
    ANALYTIC AND PROBABILISTIC METHODS IN NUMBER THEORY, 2007, : 24 - 29
  • [13] ON L-FUNCTIONS OF QUADRATIC Q-CURVES
    Bruin, Peter
    Ferraguti, Andrea
    MATHEMATICS OF COMPUTATION, 2018, 87 (309) : 459 - 499
  • [14] Families of curves with Galois action and their L-functions
    Greither, Cornelius
    JOURNAL OF NUMBER THEORY, 2015, 154 : 292 - 323
  • [15] L-FUNCTIONS OF ELLIPTIC CURVES AND BINARY RECURRENCES
    Luca, Florian
    Oyono, Roger
    Yalciner, Aynur
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (03) : 509 - 519
  • [16] L-functions of elliptic curves modulo integers
    Boudreau, Felix Baril
    JOURNAL OF NUMBER THEORY, 2024, 256 : 218 - 252
  • [17] L-functions of elliptic curves and modular forms
    de Shalit, E
    INTRODUCTION TO THE LANGLANDS PROGRAM, 2003, : 89 - 108
  • [18] Modular curves, Hecke correspondences, and L-functions
    Rohrlich, DE
    MODULAR FORMS AND FERMAT'S LAST THEOREM, 1997, : 41 - 100
  • [19] Note on equality of L-functions of elliptic curves
    Ivica Gusić
    Archiv der Mathematik, 1998, 70 : 137 - 141
  • [20] Discrete universality of the L-functions of elliptic curves
    V. Garbaliauskienė
    J. Genys
    A. Laurinčikas
    Siberian Mathematical Journal, 2008, 49