Protoplanetary disk evolution and stellar parameters of T Tauri binaries in Chamaeleon I

被引:38
|
作者
Daemgen, S. [1 ,2 ]
Petr-Gotzens, M. G. [1 ]
Correia, S. [3 ]
Teixeira, P. S. [4 ]
Brandner, W. [5 ]
Kley, W. [6 ]
Zinnecker, H. [7 ,8 ]
机构
[1] European So Observ, D-85748 Garching, Germany
[2] Univ Toronto, Dept Astron Astrophys, Toronto, ON M5S 3H4, Canada
[3] Univ Hawaii, Inst Astron, Pukalani, HI 96768 USA
[4] Univ Vienna, Inst Astron, A-1180 Vienna, Austria
[5] Max Planck Inst Astron, D-69117 Heidelberg, Germany
[6] Univ Tubingen, Inst Astron & Astrophys, D-72076 Tubingen, Germany
[7] NASA Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA
[8] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany
基金
美国国家科学基金会; 奥地利科学基金会; 美国国家航空航天局;
关键词
stars: late-type; stars: formation; circumstellar matter; binaries: visual; STAR-FORMING REGION; MAIN-SEQUENCE STARS; LOW-MASS STARS; SUBMILLIMETER CONTINUUM FLUX; ORION NEBULA CLUSTER; CIRCUMSTELLAR DISKS; YOUNG BINARIES; SPECTROSCOPIC SURVEY; MULTIPLE SYSTEMS; MOLECULAR CLOUD;
D O I
10.1051/0004-6361/201321220
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims: This study aims to determine the impact of stellar binary companions on the lifetime and evolution of circumstellar disks in the Chamaeleon I (Cha I) star-forming region by measuring the frequency and strength of accretion and circumstellar dust signatures around the individual components of T Tauri binary stars. Methods. We used high-angular resolution adaptive optics JHK(s)L'-band photometry and 1.5-2.5 mu m spectroscopy of 19 visual binary and 7 triple stars in Cha I - including one newly discovered tertiary component - with separations between similar to 25 and similar to 1000 AU. The data allowed us to infer stellar component masses and ages and, from the detection of near-infrared excess emission and the strength of Brackett-gamma emission, the presence of ongoing accretion and hot circumstellar dust of the individual stellar components of each binary. Results. Of all the stellar components in close binaries with separations of 25-100 AU, 10(-5)(+15)% show signs of accretion. This is less than half of the accretor fraction found in wider binaries, which itself appears significantly reduced (similar to 44%) compared with previous measurements of single stars in Cha I. Hot dust was found around 50(-15)(+30)% of the target components, a value that is indistinguishable from that of Cha I single stars. Only the closest binaries (<25 AU) were inferred to have a significantly reduced fraction (less than or similar to 25%) of components that harbor hot dust. Accretors were exclusively found in binary systems with unequal component masses M-secondary/M-primary < 0.8, implying that the detected accelerated disk dispersal is a function of mass-ratio. This agrees with the finding that only one accreting secondary star was found, which is also the weakest accretor in the sample. Conclusions. The results imply that disk dispersal is more accelerated the stronger the dynamical disk truncation, i.e., the smaller the inferred radius of the disk. Nonetheless, the overall measured mass accretion rates appear to be independent of the cluster environment or the existence of stellar companions at any separation greater than or similar to 25 AU, because they agree well with observations from our previous binary study in the Orion Nebula cluster and with studies of single stars in these and other star-forming regions.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] A Brγ probe of disk accretion in T Tauri stars and embedded young stellar objects
    Muzerolle, J
    Hartmann, L
    Calvet, N
    ASTRONOMICAL JOURNAL, 1998, 116 (06): : 2965 - 2974
  • [22] OPTICAL VEILING, DISK ACCRETION, AND THE EVOLUTION OF T-TAURI STARS
    HARTMANN, LW
    KENYON, SJ
    ASTROPHYSICAL JOURNAL, 1990, 349 (01): : 190 - 196
  • [23] Grain Growth and Global Structure of the Protoplanetary Disk Associated with the Mature Classical T Tauri Star, PDS 66
    Cortes, Stephanie R.
    Meyer, Michael R.
    Carpenters, John M.
    Pascucci, Ilaria
    Schneider, Glenn
    Wong, Tony
    Hines, Dean C.
    EXOPLANETS AND DISKS: THEIR FORMATION AND DIVERSITY, 2009, 1158 : 119 - +
  • [24] Magnetic fields of intermediate-mass T Tauri stars I. Magnetic detections and fundamental stellar parameters
    Villebrun, F.
    Alecian, E.
    Hussain, G.
    Bouvier, J.
    Folsom, C. P.
    Lebreton, Y.
    Amard, L.
    Charbonnel, C.
    Gallet, F.
    Haemmerle, L.
    Bohm, T.
    Johns-Krull, C.
    Kochukhov, O.
    Marsden, S. C.
    Morin, J.
    Petit, P.
    ASTRONOMY & ASTROPHYSICS, 2019, 622
  • [25] GRAIN GROWTH AND GLOBAL STRUCTURE OF THE PROTOPLANETARY DISK ASSOCIATED WITH THE MATURE CLASSICAL T TAURI STAR, PDS 66
    Cortes, Stephanie R.
    Meyer, Michael R.
    Carpenter, John M.
    Pascucci, Ilaria
    Schneider, Glenn
    Wong, Tony
    Hines, Dean C.
    ASTROPHYSICAL JOURNAL, 2009, 697 (02): : 1305 - 1315
  • [26] A PROTOPLANETARY-DISK MODEL FOR THE MOLECULAR GAS DISCOVERED TOWARD A T-TAURI STAR GG TAU
    KITAMURA, Y
    OMODAKA, T
    KAWABE, R
    YAMASHITA, T
    HANDA, T
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 1993, 45 (02) : L27 - L32
  • [27] THE EVOLUTION OF THE PROTOPLANETARY DISK RECORDED BY NUCLEOSYNTHETIC ISOTOPE VARIATIONS OF VARIABLE STELLAR ORIGIN IN REFRACTORY INCLUSIONS.
    Schonbachler, M.
    Lai, Y-J.
    Henshall, T.
    Fehr, M. A.
    Cook, D. L.
    Bullock, E. S.
    METEORITICS & PLANETARY SCIENCE, 2017, 52 : A310 - A310
  • [28] Constraints on circumstellar disk parameters from multiwavelength observations: T Tauri and SU Aurigae
    Akeson, RL
    Ciardi, DR
    van Belle, GT
    Creech-Eakman, MJ
    ASTROPHYSICAL JOURNAL, 2002, 566 (02): : 1124 - 1131
  • [29] Testing models of stellar structure and evolution - I. Comparison with detached eclipsing binaries
    del Burgo, C.
    Allende Prieto, C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 479 (02) : 1953 - 1973
  • [30] Atomic T Tauri disk winds heated by ambipolar diffusion - I. Thermal structure
    Garcia, PJV
    Ferreira, J
    Cabrit, S
    Binette, L
    ASTRONOMY & ASTROPHYSICS, 2001, 377 (02): : 589 - 608