On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector

被引:341
|
作者
Liu, Xingtian
Huang, Xiuchang
Hua, Hongxing [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Vibrat Shock & Noise, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
VIBRATION;
D O I
10.1016/j.jsv.2012.10.037
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The characteristics of a passive nonlinear isolator which is developed by parallelly adding a negative stiffness corrector to a linear spring are studied. The negative stiffness corrector, which is formed by Euler buckled beams can offer negative stiffness to the isolator at the equilibrium position in order to lower the overall dynamic stiffness of the isolator and without sacrificing the support capacity compared to the linear isolator. The static characteristics of the stiffness corrector as well as the nonlinear isolator are presented and the system parameters which can offer zero stiffness at the equilibrium point are derived. The restoring force of the nonlinear isolator after loaded is approximated using the Taylor expansion to pure cubic stiffness. The dynamic equation is established and the frequency response curves (FRCs) are obtained by using the Harmonic Balance Method (HBM) for both force and displacement excitations. The force and displacement transmissibility of the nonlinear isolator are defined and investigated, and the isolation performance is compared with an equivalent linear isolator which can support the same mass with the same static deflection as the nonlinear isolator. The effects of the amplitude of the excitation and damping ratio on the transmissibility performance are considered. The results demonstrate that the proposed zero dynamic stiffness nonlinear isolator can outperform the equivalent linear one for certain frequencies, and the performance is related to the magnitude of the excitation amplitude. Unlike the linear isolator, in the nonlinear isolator for base displacement excitation, unbounded response or transmissibility can occur which is not observed for force excitation case. The performance can also be improved by adjusting the configurations of the beams. Some useful guidelines for choosing system parameters such as the properties of the beams and the stiffness relationship between the beams and the linear spring are given. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3359 / 3376
页数:18
相关论文
共 50 条
  • [31] Quasi-zero stiffness vibration isolators with slender Euler beams as positive stiffness elements
    Chao, Tinglong
    Xu, Xiaoliang
    Wu, Zhijing
    Wen, Shurui
    Li, Fengming
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (17) : 4140 - 4153
  • [32] The Design and Analysis of a Novel Passive Quasi-Zero Stiffness Vibration Isolator
    Xinghua Zhou
    Xiao Sun
    Dingxuan Zhao
    Xiao Yang
    Kehong Tang
    Journal of Vibration Engineering & Technologies, 2021, 9 : 225 - 245
  • [33] Wide quasi-zero stiffness region isolator with decoupled high static and low dynamic stiffness
    Shi, Wenjun
    Liu, Weiqun
    Hua, Chunrong
    Li, Hongkun
    Zhu, Qiao
    Dong, Dawei
    Yuan, Yanping
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 215
  • [34] A novel quasi-zero stiffness isolator with designable stiffness using cam-roller-spring-rod mechanism
    Zhang, Yonglei
    Wen, Hao
    Hu, Haiyan
    Jin, Dongping
    ACTA MECHANICA SINICA, 2025, 41 (06)
  • [35] A tunable quasi-zero stiffness isolator based on a linear electromagnetic spring
    Yuan, Shujin
    Sun, Yi
    Zhao, Jinglei
    Meng, Kai
    Wang, Min
    Pu, Huayan
    Peng, Yan
    Luo, Jun
    Xie, Shaorong
    JOURNAL OF SOUND AND VIBRATION, 2020, 482
  • [36] An innovative quasi-zero stiffness isolator with three pairs of oblique springs
    Zhao, Feng
    Ji, Jinchen
    Ye, Kan
    Luo, Quantian
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 192
  • [37] EXPERIMENTAL STUDY OF LOW FREQUENCY VIBRATION ISOLATOR WITH QUASI-ZERO STIFFNESS
    Anvar, Valeev
    Radmir, Tashbulatov
    Alexey, Zotov
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONGRESS ON SOUND AND VIBRATION: FROM ANCIENT TO MODERN ACOUSTICS, 2016,
  • [38] Quasi-Zero Stiffness Isolator Suitable for Low-Frequency Vibration
    Sui, Guangdong
    Zhang, Xiaofan
    Hou, Shuai
    Shan, Xiaobiao
    Hou, Weijie
    Li, Jianming
    MACHINES, 2023, 11 (05)
  • [39] Limb-inspired bionic quasi-zero stiffness vibration isolator
    Zeng, Rong
    Wen, Guilin
    Zhou, Jiaxi
    Zhao, Gang
    ACTA MECHANICA SINICA, 2021, 37 (07) : 1152 - 1167
  • [40] Nonlinear behavior of quasi-zero stiffness nonlinear torsional vibration isolator
    Xu, Jiawei
    Jing, Jianping
    NONLINEAR DYNAMICS, 2024, 112 (04) : 2545 - 2568