Deep or Wide? Learning Policy and Value Neural Networks for Combinatorial Games

被引:0
|
作者
Edelkamp, Stefan [1 ]
机构
[1] Univ Bremen, Fac Math & Comp Sci, Bremen, Germany
关键词
D O I
10.1007/978-3-319-57969-6_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The success in learning how to play Go at a professional level is based on training a deep neural network on a wider selection of human expert games and raises the question on the availability, the limits, and the possibilities of this technique for other combinatorial games, especially when there is a lack of access to a larger body of additional expert knowledge. As a step towards this direction, we trained a value network for Tic-TacToe, providing perfect winning information obtained by retrograde analysis. Next, we trained a policy network for the SameGame, a challenging combinatorial puzzle. Here, we discuss the interplay of deep learning with nested rollout policy adaptation (NRPA), a randomized algorithm for optimizing the outcome of single-player games. In both cases we observed that ordinary feed-forward neural networks can perform better than convolutional ones both in accuracy and efficiency.
引用
收藏
页码:19 / 33
页数:15
相关论文
共 50 条
  • [41] Deep Neural Networks for Learning Graph Representations
    Cao, Shaosheng
    Lu, Wei
    Xu, Qiongkai
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1145 - 1152
  • [42] Advances in Machine Learning and Deep Neural Networks
    Chellappa, Rama
    Theodoridis, Sergios
    van Schaik, Andre
    PROCEEDINGS OF THE IEEE, 2021, 109 (05) : 607 - 611
  • [43] Deep learning with coherent VCSEL neural networks
    Chen, Zaijun
    Sludds, Alexander
    Davis III, Ronald
    Christen, Ian
    Bernstein, Liane
    Ateshian, Lamia
    Heuser, Tobias
    Heermeier, Niels
    Lott, James A.
    Reitzenstein, Stephan
    Hamerly, Ryan
    Englund, Dirk
    NATURE PHOTONICS, 2023, 17 (08) : 723 - +
  • [44] Learning hidden chemistry with deep neural networks
    Nguyen, Tien-Cuong
    Nguyen, Van-Quyen
    Ngo, Van-Linh
    Than, Quang-Khoat
    Pham, Tien-Lam
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 200
  • [45] Learning Structured Sparsity in Deep Neural Networks
    Wen, Wei
    Wu, Chunpeng
    Wang, Yandan
    Chen, Yiran
    Li, Hai
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [46] Representational Distance Learning for Deep Neural Networks
    McClure, Patrick
    Kriegeskorte, Nikolaus
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2016, 10
  • [47] Learning hidden elasticity with deep neural networks
    Chen, Chun-Teh
    Gu, Grace X.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (31)
  • [48] Neural networks and deep learning: a brief introduction
    Georgevici, Adrian Iustin
    Terblanche, Marius
    INTENSIVE CARE MEDICINE, 2019, 45 (05) : 712 - 714
  • [49] Evolving Deep Neural Networks for Continuous Learning
    Atamanczuk, Bruna
    Karadas, Kurt Arve Skipenes
    Agrawal, Bikash
    Chakravorty, Antorweep
    FRONTIERS OF ARTIFICIAL INTELLIGENCE, ETHICS, AND MULTIDISCIPLINARY APPLICATIONS, FAIEMA 2023, 2024, : 3 - 16
  • [50] Evolutionary neural networks for deep learning: a review
    Ma, Yongjie
    Xie, Yirong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (10) : 3001 - 3018