A Meta-Review of Feature Selection Techniques in the Context of Microarray Data

被引:4
|
作者
Mungloo-Dilmohamud, Zahra [1 ]
Jaufeerally-Fakim, Yasmina [1 ]
Pena-Reyes, Carlos [2 ]
机构
[1] Univ Mauritius, Reduit, Mauritius
[2] Univ Appl Sci Western Switzerland HES SO, Sch Business & Engn Vaud HEIG VD, Computat Intelligence Computat Biol Grp, SIB,CI4CB, Yverdon, Switzerland
关键词
Feature selection; Microarray data; Machine learning; Statistical methods; FEATURE SUBSET-SELECTION; GENE-EXPRESSION; CLASS PREDICTION; VARIABLE SELECTION; T-TEST; CLASSIFICATION; CANCER; DISCOVERY; ALGORITHMS; EXTRACTION;
D O I
10.1007/978-3-319-56148-6_3
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Microarray technologies produce very large amounts of data that need to be classified for interpretation. Large data coupled with small sample sizes make it challenging for researchers to get useful information and therefore a lot of effort goes into the design and testing of feature selection tools; literature abounds with description of numerous methods. In this paper we select five representative review papers in the field of feature selection for microarray data in order to understand their underlying classification of methods. Finally, on this base, we propose an extended taxonomy for categorizing feature selection techniques and use it to classify the main methods presented in the selected reviews.
引用
收藏
页码:33 / 49
页数:17
相关论文
共 50 条
  • [31] Fostering biological relevance in feature selection for microarray data
    Berens, M
    Liu, H
    Parsons, L
    Zhao, Z
    Yu, L
    [J]. IEEE INTELLIGENT SYSTEMS, 2005, 20 (06) : 71 - 73
  • [32] A review of feature selection techniques in bioinformatics
    Saeys, Yvan
    Inza, Inaki
    Larranaga, Pedro
    [J]. BIOINFORMATICS, 2007, 23 (19) : 2507 - 2517
  • [33] Water footprint assessment and its importance in Indian context: a meta-review
    Mehla, Mukesh Kumar
    Kothari, Mahesh
    Singh, Pardeep Kumar
    Bhakar, Sita Ram
    Yadav, Kamal Kishore
    [J]. WATER SUPPLY, 2023, 23 (08) : 3113 - 3127
  • [34] A review of microarray datasets and applied feature selection methods
    Bolon-Canedo, V.
    Sanchez-Marono, N.
    Alonso-Betanzos, A.
    Benitez, J. M.
    Herrera, F.
    [J]. INFORMATION SCIENCES, 2014, 282 : 111 - 135
  • [35] OCD: A META-REVIEW OF PATHOPHYSIOLOGY
    Perkes, I. E.
    Kassem, M. S.
    Hazell, P. L.
    Paxinos, G.
    Mitchell, P. B.
    Balleine, B. W.
    Eapen, V.
    [J]. AUSTRALIAN AND NEW ZEALAND JOURNAL OF PSYCHIATRY, 2021, 55 (1_SUPPL): : 48 - 49
  • [36] A Survey on Filter Techniques for Feature Selection in Gene Expression Microarray Analysis
    Lazar, Cosmin
    Taminau, Jonatan
    Meganck, Stijn
    Steenhoff, David
    Coletta, Alain
    Molter, Colin
    de Schaetzen, Virginie
    Duque, Robin
    Bersini, Hugues
    Nowe, Ann
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (04) : 1106 - 1119
  • [37] Measuring fatigue: a meta-review
    Machado, Myrela O.
    Kang, Na-Young Cindy
    Tai, Felicia
    Sambhi, Raman D. S.
    Berk, Michael
    Carvalho, Andre F.
    Chada, Lourdes P.
    Merola, Joseph F.
    Piguet, Vincent
    Alavi, Afsaneh
    [J]. INTERNATIONAL JOURNAL OF DERMATOLOGY, 2021, 60 (09) : 1053 - 1069
  • [38] A novel hybrid feature selection method for microarray data analysis
    Lee, Chien-Pang
    Leu, Yungho
    [J]. APPLIED SOFT COMPUTING, 2011, 11 (01) : 208 - 213
  • [39] A Discernibility-Based Approach to Feature Selection for Microarray Data
    Voulgaris, Zacharias
    Magoulas, George D.
    [J]. 2008 4TH INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 818 - 823
  • [40] Exploring the consequences of distributed feature selection in DNA microarray data
    Bolon-Canedo, Veronica
    Sechidis, Konstantinos
    Sanchez-Marono, Noelia
    Alonso-Betanzos, Amparo
    Brown, Gavin
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 1665 - 1672