Correlation Dimension of Complex Networks

被引:68
|
作者
Lacasa, Lucas [1 ]
Gomez-Gardenes, Jesus [2 ,3 ]
机构
[1] Univ Politecn Madrid, ETSI Aeronaut, Dept Matemat Aplicada & Estadist, E-28040 Madrid, Spain
[2] Univ Zaragoza, Dept Fis Mat Condensada, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, Inst Biocomputat & Phys Complex Syst BIFI, E-50009 Zaragoza, Spain
关键词
SIMILARITY;
D O I
10.1103/PhysRevLett.110.168703
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a new measure to characterize the dimension of complex networks based on the ergodic theory of dynamical systems. This measure is derived from the correlation sum of a trajectory generated by a random walker navigating the network, and extends the classical Grassberger-Procaccia algorithm to the context of complex networks. The method is validated with reliable results for both synthetic networks and real-world networks such as the world air-transportation network or urban networks, and provides a computationally fast way for estimating the dimensionality of networks which only relies on the local information provided by the walkers. DOI: 10.1103/PhysRevLett.110.168703
引用
收藏
页数:5
相关论文
共 50 条
  • [1] THE CORRELATION FRACTAL DIMENSION OF COMPLEX NETWORKS
    Wang, Xingyuan
    Liu, Zhenzhen
    Wang, Mogei
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2013, 24 (05):
  • [2] An Extended Correlation Dimension of Complex Networks
    Zhang, Sheng
    Lan, Wenxiang
    Dai, Weikai
    Wu, Feng
    Chen, Caisen
    [J]. ENTROPY, 2021, 23 (06)
  • [3] ON THE CORRELATION BETWEEN FRACTAL DIMENSION AND ROBUSTNESS OF COMPLEX NETWORKS
    Wu, Yipeng
    Chen, Zhilong
    Yao, Kui
    Zhao, Xudong
    Chen, Yicun
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (04)
  • [4] Correlation dimension in empirical networks
    Moore, Jack Murdoch
    Wang, Haiying
    Small, Michael
    Yan, Gang
    Yang, Huijie
    Gu, Changgui
    [J]. PHYSICAL REVIEW E, 2023, 107 (03)
  • [5] Tsallis information dimension of complex networks
    Zhang, Qi
    Luo, Chuanhai
    Li, Meizhu
    Deng, Yong
    Mahadevan, Sankaran
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 419 : 707 - 717
  • [6] A generalized volume dimension of complex networks
    Wei, Daijun
    Wei, Bo
    Zhang, Haixin
    Gao, Cai
    Deng, Yong
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [7] The fractal dimension of complex networks: A review
    Wen, Tao
    Cheong, Kang Hao
    [J]. INFORMATION FUSION, 2021, 73 : 87 - 102
  • [8] Fuzzy fractal dimension of complex networks
    Zhang, Haixin
    Hu, Yong
    Lan, Xin
    Mahadevan, Sankaran
    Deng, Yong
    [J]. APPLIED SOFT COMPUTING, 2014, 25 : 514 - 518
  • [9] An information dimension of weighted complex networks
    Wen, Tao
    Jiang, Wen
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 501 : 388 - 399
  • [10] A new information dimension of complex networks
    Wei, Daijun
    Wei, Bo
    Hu, Yong
    Zhang, Haixin
    Deng, Yong
    [J]. PHYSICS LETTERS A, 2014, 378 (16-17) : 1091 - 1094