Tsallis information dimension of complex networks

被引:23
|
作者
Zhang, Qi [1 ]
Luo, Chuanhai [1 ]
Li, Meizhu [1 ]
Deng, Yong [1 ,2 ,3 ]
Mahadevan, Sankaran [3 ]
机构
[1] Southwest Univ, Sch Comp & Informat Sci, Chongqing 400715, Peoples R China
[2] Northwestern Polytech Univ, Sch Automat, Xian 710072, Shaanxi, Peoples R China
[3] Vanderbilt Univ, Sch Engn, Nashville, TN 37235 USA
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
Complex networks; Information dimension; Tsallis entropy; Tsallis information dimension; STATISTICAL-MECHANICS; SYNCHRONIZATION; EMERGENCE; DYNAMICS;
D O I
10.1016/j.physa.2014.10.071
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The fractal and self-similarity properties are revealed in many complex networks. The information dimension is a useful method to describe the fractal and self-similarity properties of the complex networks. In order to show the influence of different parts in the complex networks to the information dimension, we have proposed a new information dimension based on the Tsallis entropy namely the Tsallis information dimension. The proposed information dimension is changed according to the scale which is described by the nonextensivity parameter q, and it is inverse with the nonextensivity parameter q. The existing information dimension is a special case of the Tsallis information dimension when q = 1. The Tsallis information dimension is a generalized information dimension of the complex networks. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:707 / 717
页数:11
相关论文
共 50 条
  • [1] A box-covering Tsallis information dimension and non-extensive property of complex networks
    Ramirez-Arellano, Aldo
    Hernandez-Simon, Luis Manuel
    Bory-Reyes, Juan
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 132
  • [2] An information dimension of weighted complex networks
    Wen, Tao
    Jiang, Wen
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 501 : 388 - 399
  • [3] A new information dimension of complex networks
    Wei, Daijun
    Wei, Bo
    Hu, Yong
    Zhang, Haixin
    Deng, Yong
    [J]. PHYSICS LETTERS A, 2014, 378 (16-17) : 1091 - 1094
  • [4] Two-parameter fractional Tsallis information dimensions of complex networks
    Ramirez-Arellano, Aldo
    Manuel Hernandez-Simon, Luis
    Bory-Reyes, Juan
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 150
  • [5] On information dimension self-similarity of complex networks
    Liu, Yuhua
    Tao, Shaohua
    Xu, Kaihua
    Huang, Hao
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 1265 - 1268
  • [6] Tsallis Mapping in Growing Complex Networks with Fitness
    苏桂锋
    张小兵
    张一
    [J]. Communications in Theoretical Physics, 2012, 57 (03) : 493 - 498
  • [7] On the construction of complex networks with optimal Tsallis entropy
    Ochiai, T.
    Nacher, J. C.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (23) : 4887 - 4892
  • [8] Tsallis Mapping in Growing Complex Networks with Fitness
    Su Gui-Feng
    Zhang Xiao-Bing
    Zhang Yi
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 57 (03) : 493 - 498
  • [9] A d-SUMMABLE APPROACH TO DENG INFORMATION DIMENSION OF COMPLEX NETWORKS
    Ramirez-Arellano, Aldo
    Bory-Reyes, Juan
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (02)
  • [10] Reformulation of Deng information dimension of complex networks based on a sigmoid asymptote
    Ortiz-Vilchis, Pilar
    Lei, Mingli
    Ramirez-Arellano, Aldo
    [J]. CHAOS SOLITONS & FRACTALS, 2024, 180