McKay correspondence for symplectic quotient singularities

被引:19
|
作者
Kaledin, D [1 ]
机构
[1] Inst Theoret & Expt Phys, Moscow 117259, Russia
关键词
D O I
10.1007/s002220100192
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:151 / 175
页数:25
相关论文
共 50 条
  • [31] Symplectic singularities
    Beauville, A
    [J]. INVENTIONES MATHEMATICAE, 2000, 139 (03) : 541 - 549
  • [32] Symplectic singularities
    Arnaud Beauville
    [J]. Inventiones mathematicae, 2000, 139 : 541 - 549
  • [33] Symplectic singularities
    Druel, S
    [J]. JOURNAL OF ALGEBRAIC GEOMETRY, 2004, 13 (03) : 427 - 439
  • [34] Hilbert–Kunz multiplicity, McKay correspondence and good ideals¶in two-dimensional rational singularities
    Kei-ichi Watanabe
    Ken-ichi Yoshida
    [J]. manuscripta mathematica, 2001, 104 : 275 - 294
  • [35] Symplectic quotients have symplectic singularities
    Herbig, Hans-Christian
    Schwarz, Gerald W.
    Seaton, Christopher
    [J]. COMPOSITIO MATHEMATICA, 2020, 156 (03) : 613 - 646
  • [36] RIGIDITY OF QUOTIENT SINGULARITIES
    SCHLESSINGER, M
    [J]. INVENTIONES MATHEMATICAE, 1971, 14 (01) : 17 - +
  • [37] On exceptional quotient singularities
    Cheltsov, Ivan
    Shramov, Constantin
    [J]. GEOMETRY & TOPOLOGY, 2011, 15 (04) : 1843 - 1882
  • [38] Vertex representations and McKay correspondence
    Jing, NH
    [J]. ALGEBRA COLLOQUIUM, 2004, 11 (01) : 53 - 70
  • [39] GEOMETRIC CONSTRUCTION OF THE MCKAY CORRESPONDENCE
    GONZALEZSPRINBERG, G
    VERDIER, JL
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1983, 16 (03): : 409 - 449
  • [40] McKay correspondence and orbifold equivalence
    Ionov, Andrei
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (05)