RANDOM SURVIVAL FORESTS

被引:1684
|
作者
Ishwaran, Hemant [1 ]
Kogalur, Udaya B. [2 ]
Blackstone, Eugene H. [3 ]
Lauer, Michael S. [4 ]
机构
[1] Cleveland Clin, Dept Quantitat Hlth Sci, Cleveland, OH 44195 USA
[2] Columbia Univ, Dept Stat, New York, NY 10027 USA
[3] Cleveland Clin, Dept Thorac & Cardiovasc Surg, Cleveland, OH 44195 USA
[4] NHLBI, Div Prevent & Populat Sci, Rockledge Ctr 2, Bethesda, MD 20892 USA
来源
ANNALS OF APPLIED STATISTICS | 2008年 / 2卷 / 03期
基金
美国国家卫生研究院;
关键词
Conservation of events; cumulative hazard function; ensemble; out-of-bag; prediction error; survival tree;
D O I
10.1214/08-AOAS169
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce random survival forests, a random forests method for the analysis of right-censored survival data. New survival splitting rules for growing survival trees are introduced, as is a new missing data algorithm for imputing missing data. A conservation-of-events principle for survival forests is introduced and used to define ensemble mortality, a simple interpretable measure of mortality that can be used as a predicted outcome. Several illustrative examples are given, including a case study of the prognostic implications of body mass for individuals with coronary artery disease. Computations for all examples were implemented using the freely available R-software package. randomSurvivalForest.
引用
收藏
页码:841 / 860
页数:20
相关论文
共 50 条
  • [21] Prognosis of Epileptic Seizure Event Onsets Using Random Survival Forests
    Afrin, Kahkashan
    Dusi, Revanth
    Zhong, Yuhao
    Reddy, D. Samba
    Bukkapatnam, Satish T. S.
    [J]. IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING, 2022, 12 (03) : 221 - 231
  • [22] Dynamic estimation with random forests for discrete-time survival data
    Moradian, Hoora
    Yao, Weichi
    Larocque, Denis
    Simonoff, Jeffrey S.
    Frydman, Halina
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (02): : 533 - 548
  • [23] RFRSF: Employee Turnover Prediction Based on Random Forests and Survival Analysis
    Jin, Ziwei
    Shang, Jiaxing
    Zhu, Qianwen
    Ling, Chen
    Xie, Wu
    Qiang, Baohua
    [J]. WEB INFORMATION SYSTEMS ENGINEERING, WISE 2020, PT II, 2020, 12343 : 503 - 515
  • [24] Brain Tumor Segmentation and Survival Prediction Using a Cascade of Random Forests
    Lefkovits, Szidonia
    Szilagyi, Laszlo
    Lefkovits, Laszlo
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 334 - 345
  • [25] Survival Prediction In High Dimensional Datasets - Comparative Evaluation Of Lasso Regularization and Random Survival Forests
    Joffe, Erel
    Coombes, Kevin R.
    Qiu, Yi Hua
    Yoo, Suk Young
    Zhang, Nianxiang
    Bernstam, Elmer V.
    Kornblau, Steven M.
    [J]. BLOOD, 2013, 122 (21)
  • [26] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [27] Random Forests
    Leo Breiman
    [J]. Machine Learning, 2001, 45 : 5 - 32
  • [28] Random forests
    Pavlov, YL
    [J]. PROBABILISTIC METHODS IN DISCRETE MATHEMATICS, 1997, : 11 - 18
  • [29] The AUGIS Survival Predictor: Prediction of Long-Term and Conditional Survival After Esophagectomy Using Random Survival Forests
    Rahman, Saqib A.
    Walker, Robert C.
    Maynard, Nick
    Trudgill, Nigel
    Crosby, Tom A.
    Cromwell, David J.
    Underwood, Timothy
    NOGCA Project Team AUGIS
    [J]. ANNALS OF SURGERY, 2023, 277 (02) : 267 - 274
  • [30] Identifying Important Risk Factors for Survival in Kidney Graft Failure Patients Using Random Survival Forests
    Hamidi, Omid
    Poorolajal, Jalal
    Farhadian, Maryam
    Tapak, Leili
    [J]. IRANIAN JOURNAL OF PUBLIC HEALTH, 2016, 45 (01) : 27 - 33