HITS is principal components analysis

被引:4
|
作者
Saerens, M [1 ]
Fouss, F [1 ]
机构
[1] Catholic Univ Louvain, Informat Syst Res Unit, B-1348 Louvain, Belgium
关键词
D O I
10.1109/WI.2005.71
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we show that Kleinberg's hubs and authorities model (HITS) is simply Principal Components Analysis (PCA; maybe the most widely used multivariate statistical analysis method), albeit without centering, applied to the adjacency matrix of the graph of web pages. We further show that a variant of HITS, SALSA, is closely related to correspondence analysis, another standard multivariate statistical analysis method. In addition to provide a clear statistical interpretation for HITS, this result suggests to rely on existing work already published in the multivariate statistical analysis litterature (extensions of PCA or correspondence analysis) in order to analyse or design new web pages scoring procedures.
引用
收藏
页码:782 / 785
页数:4
相关论文
共 50 条
  • [41] Discriminant analysis with common principal components
    Zhu, Mu
    BIOMETRIKA, 2006, 93 (04) : 1018 - 1024
  • [42] PROCRASTINATION, A PRINCIPAL COMPONENTS-ANALYSIS
    MCCOWN, W
    JOHNSON, J
    PETZEL, T
    PERSONALITY AND INDIVIDUAL DIFFERENCES, 1989, 10 (02) : 197 - 202
  • [43] Principal components analysis competitive learning
    López-Rubio, E
    Muñoz-Pérez, J
    Gómez-Ruiz, JA
    COMPUTATIONAL METHODS IN NEURAL MODELING, PT 1, 2003, 2686 : 318 - 325
  • [44] ANALYSIS OF THE PRINCIPAL COMPONENTS OF ANTARCTIC PRECIPITATIONS
    PICCARDI, G
    UDISTI, R
    BARBOLANI, E
    ANNALI DI CHIMICA, 1989, 79 (11-12) : 701 - 712
  • [45] ANALYSIS OF PRINCIPAL COMPONENTS OF ORIENTATION DATA
    MARKLAND, J
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1974, 11 (05): : 157 - 163
  • [46] AN ANALYSIS OF CRIMES BY METHOD OF PRINCIPAL COMPONENTS
    AHAMAD, B
    THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1967, 16 (01): : 17 - &
  • [47] Asynchronous gossip principal components analysis
    Fellus, Jerome
    Picard, David
    Gosselin, Philippe-Henri
    NEUROCOMPUTING, 2015, 169 : 262 - 271
  • [48] Nonlinear principal component analysis to preserve the order of principal components
    Saegusa, R
    Sakano, H
    Hashimoto, S
    NEUROCOMPUTING, 2004, 61 : 57 - 70
  • [49] INFLUENCE IN PRINCIPAL COMPONENTS-ANALYSIS
    CRITCHLEY, F
    BIOMETRIKA, 1985, 72 (03) : 627 - 636
  • [50] PRINCIPAL COMPONENTS AND CROP WEATHER ANALYSIS
    CORNIA, RL
    POCHOP, LO
    TRANSACTIONS OF THE ASAE, 1975, 18 (02): : 335 - 339