uCash: ATM Cash Management as a Critical and Data-intensive Application

被引:1
|
作者
Velivassaki, Terpsichori-Helen [1 ]
Athanasoulis, Panagiotis [1 ]
Trakadas, Panagiotis [2 ]
机构
[1] SingularLogic, Achaias 3 & Trizinias St, Kifisia, Attica, Greece
[2] Natl & Kapodistrian Univ Athens, Ilissia 15784, Attica, Greece
基金
欧盟地平线“2020”;
关键词
Cash Management; Stream Analytics; ATM;
D O I
10.5220/0007876606420647
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Distributed cloud databases wrapped with streaming analytics modules provide nowadays quick response to increasingly demanding real-time applications, relying on fast analytical and online processing of enormous amounts of data or very frequently updated. However, time-critical applications, dealing with sensitive data, typically run on mainframes, cannot fully benefit from existing solutions. Such applications can be found in Banking, Financial Services and Insurance (BFSI) industry, one notable being the ATM cash management. The paper presents uCash, an ATM cash management system, running on top cloud analytics appliances, which can be hosted insite. The proposed system allows data processing and Key Performance Indicators (KPIs) calculation and communication among diverse actors, resulting in highly efficient cash management over large ATM networks.
引用
收藏
页码:642 / 647
页数:6
相关论文
共 50 条
  • [21] Data-intensive application scheduling on Mobile Edge Cloud Computing
    Alkhalaileh, Mohammad
    Calheiros, Rodrigo N.
    Quang Vinh Nguyen
    Javadi, Bahman
    [J]. JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2020, 167
  • [22] Implementing and optimizing a data-intensive hydrodynamics application on the stream processor
    Zhang, Ying
    Li, Gen
    Yang, Xuejun
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2007, PT 3, PROCEEDINGS, 2007, 4707 : 353 - +
  • [23] A Coarray Fortran Implementation to Support Data-Intensive Application Development
    Eachempati, Deepak
    Richardson, Alan
    Liao, Terrence
    Calandra, Henri
    Chapman, Barbara
    [J]. 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC), 2012, : 771 - 776
  • [24] A Coarray Fortran implementation to support data-intensive application development
    Eachempati, Deepak
    Richardson, Alan
    Jana, Siddhartha
    Liao, Terrence
    Calandra, Henri
    Chapman, Barbara
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2014, 17 (02): : 569 - 583
  • [25] Crowdsourcing roles, methods and tools for data-intensive disaster management
    Marta Poblet
    Esteban García-Cuesta
    Pompeu Casanovas
    [J]. Information Systems Frontiers, 2018, 20 : 1363 - 1379
  • [26] The Future of Data-Intensive Science
    Hey, Tony
    Gannon, Dennis
    Pinkelman, Jim
    [J]. COMPUTER, 2012, 45 (05) : 81 - 82
  • [27] Data throttling for data-intensive workflows
    Park, Sang-Min
    Humphrey, Marty
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-8, 2008, : 1796 - 1806
  • [28] Data-intensive resourcing in healthcare
    Linda F. Hogle
    [J]. BioSocieties, 2016, 11 : 372 - 393
  • [29] Applications in Data-Intensive Computing
    Shah, Anuj R.
    Adkins, Joshua N.
    Baxter, Douglas J.
    Cannon, William R.
    Chavarria-Miranda, Daniel G.
    Choudhury, Sutanay
    Gorton, Ian
    Gracio, Deborah K.
    Halter, Todd D.
    Jaitly, Navdeep D.
    Johnson, John R.
    Kouzes, Richard T.
    Macduff, Matthew C.
    Marquez, Andres
    Monroe, Matthew E.
    Oehmen, Christopher S.
    Pike, William A.
    Scherrer, Chad
    Villa, Oreste
    Webb-Robertson, Bobbie-Jo
    Whitney, Paul D.
    Zuljevic, Nino
    [J]. ADVANCES IN COMPUTERS, VOL 79, 2010, 79 : 1 - 70
  • [30] Data-Intensive System Evolution
    Cleve, Anthony
    Mens, Tom
    Hainaut, Jean-Luc
    [J]. COMPUTER, 2010, 43 (08) : 110 - 112