Wearable Sport Activity Classification Based on Deep Convolutional Neural Network

被引:30
|
作者
Hsu, Yu-Liang [1 ]
Chang, Hsing-Cheng [1 ]
Chiu, Yung-Jung [1 ]
机构
[1] Feng Chia Univ, Dept Automat Control Engn, Taichung 40724, Taiwan
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Sports; Sensors; Feature extraction; Classification algorithms; Accelerometers; Spectrogram; Gyroscopes; Wearable inertial sensing device; sport activity classification; deep learning; convolutional neural network; HUMAN ACTIVITY RECOGNITION; INERTIAL-MEASUREMENT-UNIT; ACCELEROMETER; MOVEMENT; SYSTEM;
D O I
10.1109/ACCESS.2019.2955545
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper develops a wearable sport activity classification system and its associated deep learning-based sport activity classification algorithm for accurately recognizing sport activities. The proposed wearable system used two wearable inertial sensing modules worn on athletes wrist and ankle to collect sport motion signals and utilized a deep convolutional neural network (CNN) to extract the inherent features from the spectrograms of the short-term Fourier transform (STFT) of the sport motion signals. The wearable inertial sensing module is composed of a microcontroller, a triaxial accelerometer, a triaxial gyroscope, an RF wireless transmission module, and a power supply circuit. All ten participants wore the two wearable inertial sensing modules on their wrist and ankle to collect motion signals generated by sport activities. Subsequently, we developed a deep learning-based sport activity classification algorithm composed of sport motion signal collection, signal preprocessing, sport motion segmentation, signal normalization, spectrogram generation, image mergence/resizing, and CNN-based classification to recognize ten types of sport activities. The CNN classifier consisting of two convolutional layers, two pooling layers, a fully-connected layer, and a softmax layer can be used to divide the sport activities into table tennis, tennis, badminton, golf, batting baseball, shooting basketball, volleyball, dribbling basketball, running, and bicycling, respectively. Finally, the experimental results show that the proposed wearable sport activity classification system and its deep learning-based sport activity classification algorithm can recognize 10 sport activities with the classification rate of 99.30.
引用
收藏
页码:170199 / 170212
页数:14
相关论文
共 50 条
  • [21] Towards the classification of heart sounds based on convolutional deep neural network
    Demir, Fatih
    Sengur, Abdulkadir
    Bajaj, Varun
    Polat, Kemal
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2019, 7 (01)
  • [22] A convolutional and transformer based deep neural network for automatic modulation classification
    Ying, Shanchuan
    Huang, Sai
    Chang, Shuo
    Yang, Zheng
    Feng, Zhiyong
    Guo, Ningyan
    CHINA COMMUNICATIONS, 2023, 20 (05) : 135 - 147
  • [23] Deep convolutional neural network based hyperspectral brain tissue classification
    Poonkuzhali, P.
    Prabha, K. Helen
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2023, 31 (04) : 777 - 796
  • [24] Recognition and Classification of Broiler Droppings Based on Deep Convolutional Neural Network
    Wang, Jintao
    Shen, Mingxia
    Liu, Longshen
    Xu, Yi
    Okinda, Cedric
    JOURNAL OF SENSORS, 2019, 2019
  • [25] Activity Recognition with Wearable Accelerometers using Deep Convolutional Neural Network and the Effect of Sensor Placement
    Kulchyk, Jeremy
    Etemad, Ali
    2019 IEEE SENSORS, 2019,
  • [26] Wetland Classification Using Deep Convolutional Neural Network
    Mandianpari, Masoud
    Rezaee, Mohammad
    Zhang, Yun
    Salehi, Bahram
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9249 - 9252
  • [27] Deep Convolutional Neural Network Approach for Classification of Poems
    Deshmukh, Rushali
    Kiwelekar, Arvind W.
    INTELLIGENT HUMAN COMPUTER INTERACTION, IHCI 2021, 2022, 13184 : 74 - 88
  • [28] DeepDocClassifier: Document Classification with Deep Convolutional Neural Network
    Afzal, Muhammad Zeshan
    Capobianco, Samuele
    Malik, Muhammad Imran
    Marinai, Simone
    Breuel, Thomas M.
    Dengel, Andreas
    Liwicki, Marcus
    2015 13TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), 2015, : 1111 - 1115
  • [29] A novel deep convolutional neural network for arrhythmia classification
    Dang, Hao
    Sun, Muyi
    Zhang, Guanhong
    Zhou, Xiaoguang
    Chang, Qing
    Xu, Xiangdong
    2019 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2019, : 7 - 11
  • [30] Fetal Distress Classification with Deep Convolutional Neural Network
    Singh, Harman Deep
    Saini, Munish
    Kaur, Jasdeep
    CURRENT WOMENS HEALTH REVIEWS, 2021, 17 (01) : 60 - 73