Evaluation of Land Use Regression Models for NO2 and Particulate Matter in 20 European Study Areas: The ESCAPE Project

被引:99
|
作者
Wang, Meng [1 ]
Beelen, Rob [1 ]
Basagana, Xavier [2 ,3 ,4 ]
Becker, Thomas [5 ]
Cesaroni, Giulia [6 ]
de Hoogh, Kees [7 ]
Dedele, Audrius [8 ]
Declercq, Christophe [9 ]
Dimakopoulou, Konstantina [10 ]
Eeftens, Marloes [1 ]
Forastiere, Francesco [6 ]
Galassi, Claudia [11 ]
Grazuleviciene, Regina [8 ]
Hoffmann, Barbara [12 ,13 ]
Heinrich, Joachim [14 ,15 ]
Iakovides, Minas [16 ]
Kuenzli, Nino [17 ,18 ]
Korek, Michal [19 ]
Lindley, Sarah [20 ]
Moelter, Anna [21 ]
Mosler, Gioia [7 ]
Madsen, Christian [22 ]
Nieuwenhuijsen, Mark [2 ,3 ,4 ]
Phuleria, Harish [17 ,18 ]
Pedeli, Xanthi [10 ]
Raaschou-Nielsen, Ole [23 ]
Ranzi, Andrea [11 ]
Stehanou, Euripides [16 ]
Sugiri, Dorothee [12 ]
Stempfelet, Morgane [9 ]
Tsai, Ming-Yi [17 ,18 ,24 ]
Lanki, Timo [25 ]
Udvardy, Orsolya [26 ]
Varro, Mihaly J. [26 ]
Wolf, Kathrin [14 ,15 ]
Weinmayr, Gudrun [12 ,27 ]
Yli-Tuomi, Tarja [25 ]
Hoek, Gerard [1 ]
Brunekreef, Bert [1 ,28 ]
机构
[1] Univ Utrecht, Inst Risk Assessment Sci, NL-3508 TD Utrecht, Netherlands
[2] Ctr Res Environm Epidemiol CREAL, Barcelona, Spain
[3] Hosp del Mar, Res Inst, IMIM, Barcelona, Spain
[4] CIBER Epidemiol & Salud Publ CIBERESP, Madrid, Spain
[5] Aarhus Univ, Dept Environm Sci, DK-8000 Aarhus C, Denmark
[6] Lazio Reg Hlth Serv, Dept Epidemiol, Rome, Italy
[7] Univ London Imperial Coll Sci Technol & Med, Dept Epidemiol & Biostat, MRC HPA Ctr Environm & Hlth, London, England
[8] Vytautas Magnus Univ, Kaunas, Lithuania
[9] French Inst Publ Hlth Surveillance, St Maurice, France
[10] Natl & Kapodistrian Univ Athens, Sch Med, Dept Hyg Epidemiol & Med Stat, Athens 11528, Greece
[11] ARPA Emilia Romagna, Reg Reference Ctr Environm & Hlth, Modena, Italy
[12] Univ Dusseldorf, IUF Leibniz Res Inst Environm Med, D-40225 Dusseldorf, Germany
[13] Univ Dusseldorf, Fac Med, D-40225 Dusseldorf, Germany
[14] Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Epidemiol 1, Neuherberg, Germany
[15] Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Epidemiol 2, Neuherberg, Germany
[16] Univ Crete, Dept Chem, Environm Chem Proc Lab, Iraklion, Greece
[17] Swiss Trop & Publ Hlth Inst, Dept Epidemiol & Publ Hlth, Basel, Switzerland
[18] Univ Basel, Basel, Switzerland
[19] Karolinska Inst, Inst Environm Med, S-10401 Stockholm, Sweden
[20] Univ Manchester, Sch Environm & Dev Geog, Manchester, Lancs, England
[21] Univ Manchester, Ctr Occupat & Environm Hlth, Manchester, Lancs, England
[22] Norwegian Inst Publ Hlth, Div Epidemiol, Oslo, Norway
[23] Danish Canc Soc, Res Ctr, Copenhagen, Denmark
[24] Univ Washington, Dept Environm & Occupat Hlth Sci, Seattle, WA 98195 USA
[25] Natl Inst Hlth & Welf, Dept Environm Hlth, Helsinki, Finland
[26] Natl Inst Environm Hlth, Dept Air Hyg, Budapest, Hungary
[27] Univ Ulm, Inst Epidemiol & Med Biometry, D-89069 Ulm, Germany
[28] Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
关键词
AIR-POLLUTION; MORTALITY; EXPOSURE;
D O I
10.1021/es305129t
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land use regression models (LUR) frequently use leave-one-out-cross-validation (LOOCV) to assess model fit, but recent studies suggested that this may overestimate predictive ability in independent data sets. Our aim was to evaluate LUR models for nitrogen dioxide (NO2) and particulate matter (PM) components exploiting the high correlation between concentrations of PM metrics and NO2. LUR models have been developed for NO2, PM2.5 absorbance, and copper (Cu) in PM10 based on 20 sites in each of the 20 study areas of the ESCAPE project. Models were evaluated with LOOCV and "hold-out evaluation (HEV)" using the correlation of predicted NO2 or PM concentrations with measured NO2 concentrations at the 20 additional NO2 sites in each area. For NO2, PM2.5 absorbance and PM10 Cu, the median LOOCV R(2)s were 0.83, 0.81, and 0.76 whereas the median HEV R-2 were 0.52, 0.44, and 0.40. There was a positive association between the LOOCV R-2 and HEV R-2 for PM2.5 absorbance and PM10 Cu. Our results confirm that the predictive ability of LUR models based on relatively small training sets is overestimated by the LOOCV R(2)s. Nevertheless, in most areas LUR models still explained a substantial fraction of the variation of concentrations measured at independent sites.
引用
收藏
页码:4357 / 4364
页数:8
相关论文
共 50 条
  • [31] Development of spatiotemporal land use regression models for PM2.5 and NO2 in Chongqing, China, and exposure assessment for the CLIMB study
    Harper, Alexander
    Baker, Philip N.
    Xia, Yinyin
    Kuang, Tao
    Zhang, Hua
    Chen, Yingxin
    Han, Ting-Li
    Gulliver, John
    [J]. ATMOSPHERIC POLLUTION RESEARCH, 2021, 12 (07)
  • [32] Development of environmental data for land use regression models to assess fine particulate matter pollution in Ho Chi Minh City
    Cong-Thanh, Tran
    Tuyen, Nguyen Ngoc
    Hang, Nguyen Thi Thuy
    [J]. NATIONAL CONFERENCE ON GIS APPLICATION 2022: GIS AND REMOTE SENSING APPLICATIONS FOR ENVIRONMENT AND RESOURCE MANAGEMENT, 2023, 1170
  • [33] Development of European NO2 Land Use Regression Model for present and future exposure assessment: Implications for policy analysis
    Vizcaino, Pilar
    Lavalle, Carlo
    [J]. ENVIRONMENTAL POLLUTION, 2018, 240 : 140 - 154
  • [34] Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2 - Results of the ESCAPE project
    Eeftens, Marloes
    Tsai, Ming-Yi
    Ampe, Christophe
    Anwander, Bernhard
    Beelen, Rob
    Bellander, Tom
    Cesaroni, Giulia
    Cirach, Marta
    Cyrys, Josef
    de Hoogh, Kees
    De Nazelle, Audrey
    de Vocht, Frank
    Declercq, Christophe
    Dedele, Audrius
    Eriksen, Kirsten
    Galassi, Claudia
    Grazuleviciene, Regina
    Grivas, Georgios
    Heinrich, Joachim
    Hoffmann, Barbara
    Iakovides, Minas
    Ineichen, Alex
    Katsouyanni, Klea
    Korek, Michal
    Kraemer, Ursula
    Kuhlbusch, Thomas
    Lanki, Timo
    Madsen, Christian
    Meliefste, Kees
    Moelter, Anna
    Mosler, Gioia
    Nieuwenhuijsen, Mark
    Oldenwening, Marieke
    Pennanen, Arto
    Probst-Hensch, Nicole
    Quass, Ulrich
    Raaschou-Nielsen, Ole
    Ranzi, Andrea
    Stephanou, Euripides
    Sugiri, Dorothee
    Udvardy, Orsolya
    Vaskoevi, Eva
    Weinmayr, Gudrun
    Brunekreef, Bert
    Hoek, Gerard
    [J]. ATMOSPHERIC ENVIRONMENT, 2012, 62 : 303 - 317
  • [35] Development and Back-Extrapolation of NO2 Land Use Regression Models for Historic Exposure Assessment in Great Britain
    Gulliver, John
    de Hoogh, Kees
    Hansell, Anna
    Vienneau, Danielle
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (14) : 7804 - 7811
  • [36] Land use regression models revealing spatiotemporal co-variation in NO2, NO, and O3 in the Netherlands
    Lu, Meng
    Soenario, Ivan
    Helbich, Marco
    Schmitz, Oliver
    Hoek, Gerard
    van der Molen, Michiel
    Karssenberg, Derek
    [J]. Atmospheric Environment, 2021, 223
  • [37] Land use regression models revealing spatiotemporal co-variation in NO2, NO, and O3 in the Netherlands
    Lu, Meng
    Soenario, Ivan
    Helbich, Marco
    Schmitz, Oliver
    Hoek, Gerard
    van der Molen, Michiel
    Karssenberg, Derek
    [J]. ATMOSPHERIC ENVIRONMENT, 2020, 223
  • [38] Development of Spatio-Temporal Land Use Regression Models for Fine Particulate Matter and Wood-Burning Tracers in Temuco, Chile
    Quinteros, Maria Elisa
    Blazquez, Carola
    Ayala, Salvador
    Kilby, Dylan
    Cardenas-R, Juan Pablo
    Ossa, Ximena
    Rosas-Diaz, Felipe
    Stone, Elizabeth A.
    Blanco, Estela
    Delgado-Saborit, Juana-Maria
    Harrison, Roy M.
    Ruiz-Rudolph, Pablo
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (48) : 19473 - 19486
  • [39] Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data
    de Hoogh, Kees
    Gulliver, John
    van Donkelaar, Aaron
    Martin, Randall V.
    Marshall, Julian D.
    Bechle, Matthew J.
    Cesaroni, Giulia
    Cirach Pradas, Marta
    Dedele, Audrius
    Eeftens, Marloes
    Forsberg, Bertil
    Galassi, Claudia
    Heinrich, Joachim
    Hoffmann, Barbara
    Jacquemin, Benedicte
    Katsouyanni, Klea
    Korek, Michal
    Kunzli, Nino
    Lindley, Sarah J.
    Lepeule, Johanna
    Meleux, Frederik
    de Nazelle, Audrey
    Nieuwenhuijsen, Mark
    Nystad, Wenche
    Raaschou-Nielsen, Ole
    Peters, Annette
    Peuch, Vincent-Henri
    Rouil, Laurence
    Udvardy, Orsolya
    Slama, Remy
    Stempfelet, Morgane
    Stephanou, Euripides G.
    Tsai, Ming Y.
    Yli-Tuomi, Tarja
    Weinmayr, Gudrun
    Brunekreef, Bert
    Vienneau, Danielle
    Hoek, Gerard
    [J]. ENVIRONMENTAL RESEARCH, 2016, 151 : 1 - 10
  • [40] Estimating daily surface NO2 concentrations from satellite data - a case study over Hong Kong using land use regression models
    Anand, Jasdeep S.
    Monks, Paul S.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (13) : 8211 - 8230