Non-linear independent component analysis with diffusion maps

被引:110
|
作者
Singer, Amit [1 ]
Coifman, Ronald R. [1 ]
机构
[1] Yale Univ, Dept Math, Program Appl Math, New Haven, CT 06520 USA
关键词
D O I
10.1016/j.acha.2007.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce intrinsic, non-linearly invariant, parameterizations of empirical data, generated by a non-linear transformation of independent variables. This is achieved through anisotropic diffusion kernels on observable data manifolds that approximate a Laplacian on the inaccessible independent variable domain. The key idea is a symmetrized second-order approximation of the unknown distances in the independent variable domain, using the metric distortion induced by the Jacobian of the unknown mapping from variables to data. This distortion is estimated using local principal component analysis. Thus, the non-linear independent component analysis problem is solved whenever the generation of the data enables the estimation of the Jacobian. In particular, we obtain the non-linear independent components of stochastic Ito processes and indicate other possible applications. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:226 / 239
页数:14
相关论文
共 50 条
  • [31] Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis
    Fan, Jicong
    Wang, Youqing
    [J]. INFORMATION SCIENCES, 2014, 259 : 369 - 379
  • [32] Non-linear systemidentification using Hammerstein and non-linear feedback models with piecewise linear static maps
    Van Pelt, TH
    Bernstein, DS
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2001, 74 (18) : 1807 - 1823
  • [33] COMPONENT MODE ANALYSIS OF A SIMPLE NON-LINEAR, NON-CONSERVATIVE SYSTEM
    DOWELL, EH
    [J]. JOURNAL OF SOUND AND VIBRATION, 1982, 80 (02) : 233 - 246
  • [34] Panorama Maps with Non-linear Ray Tracing
    Falk, Martin
    Schafhitzel, Tobias
    Weiskopf, Daniel
    Ertl, Thomas
    [J]. GRAPHITE 2007: 5TH INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS AND INTERACTIVE TECHNIQUES IN AUSTRALASIA AND SOUTHERN ASIA, PROCEEDINGS, 2007, : 9 - +
  • [35] Non-linear spectrum-preserving maps
    Baribeau, L
    Ransford, T
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 : 8 - 14
  • [36] Non-linear diffusion of cosmic rays
    Ptuskin, V. S.
    Zirakashvili, V. N.
    Plesser, A. A.
    [J]. ADVANCES IN SPACE RESEARCH, 2008, 42 (03) : 486 - 490
  • [37] NON-LINEAR DIFFUSION IN A FINITE LAYER
    PARLANGE, JY
    LOCKINGTON, DA
    BRADDOCK, RD
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1982, 26 (02) : 249 - 262
  • [38] SOLUTION OF A NON-LINEAR DIFFUSION EQUATION
    BABADSHANJAN, H
    GAJEWSKI, H
    [J]. MATHEMATISCHE NACHRICHTEN, 1977, 79 : 253 - 259
  • [39] Non-linear effects in diffusion on nanoscale
    Beke, DL
    Erdélyi, Z
    Szabó, IA
    Langer, GA
    Katona, GL
    Cserháti, C
    [J]. DIFFUSION IN MATERIALS: DIMAT 2004, PTS 1 AND 2, 2005, 237-240 : 1031 - 1042
  • [40] NON-LINEAR DIFFUSION OF VACANCIES IN A CRYSTAL
    HARA, H
    FUJITA, S
    WATANABE, R
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1979, 18 (04) : 271 - 277