Non-linear independent component analysis with diffusion maps

被引:110
|
作者
Singer, Amit [1 ]
Coifman, Ronald R. [1 ]
机构
[1] Yale Univ, Dept Math, Program Appl Math, New Haven, CT 06520 USA
关键词
D O I
10.1016/j.acha.2007.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce intrinsic, non-linearly invariant, parameterizations of empirical data, generated by a non-linear transformation of independent variables. This is achieved through anisotropic diffusion kernels on observable data manifolds that approximate a Laplacian on the inaccessible independent variable domain. The key idea is a symmetrized second-order approximation of the unknown distances in the independent variable domain, using the metric distortion induced by the Jacobian of the unknown mapping from variables to data. This distortion is estimated using local principal component analysis. Thus, the non-linear independent component analysis problem is solved whenever the generation of the data enables the estimation of the Jacobian. In particular, we obtain the non-linear independent components of stochastic Ito processes and indicate other possible applications. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:226 / 239
页数:14
相关论文
共 50 条
  • [1] Hierarchical feature maps for non-linear component analysis
    Herrmann, M
    Der, R
    Balzuweit, G
    [J]. ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 1390 - 1394
  • [2] Non-linear independent component analysis for speech recognition
    Omar, MK
    Hasegawa-Johnson, M
    [J]. CCCT 2003, VOL6, PROCEEDINGS: COMPUTER, COMMUNICATION AND CONTROL TECHNOLOGIES: III, 2003, : 204 - 209
  • [3] On existence and uniqueness of solutions in non-linear independent component analysis
    Hyvarinen, A
    Pajunen, P
    [J]. IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 1350 - 1355
  • [4] Fault detection of non-linear processes using kernel independent component analysis
    Lee, Jong-Min
    Qin, S. Joe
    Lee, In-Beum
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2007, 85 (04): : 526 - 536
  • [5] NON-LINEAR PRINCIPAL COMPONENT ANALYSIS
    KOHLMANN, T
    [J]. ZEITSCHRIFT FUR SOZIOLOGIE, 1988, 17 (06): : 474 - 482
  • [6] Bayesian non-linear independent component analysis by multi-layer perceptrons
    Lappalainen, H
    Honkela, A
    [J]. ADVANCES IN INDEPENDENT COMPONENT ANALYSIS, 2000, : 93 - 121
  • [7] Non-linear independent component analysis using series reversion and Weierstrass network
    Gao, P.
    Woo, W. L.
    Dlay, S. S.
    [J]. IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2006, 153 (02): : 115 - 131
  • [8] Multimodal fusion of brain imaging data with joint non-linear independent component analysis
    Agcaoglu, Oktay
    Silva, Rogers F.
    Calhoun, Vince
    [J]. 2022 IEEE 14TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP), 2022,
  • [9] SPECTRAL-ANALYSIS OF NOISY NON-LINEAR MAPS
    HIRSHMAN, SP
    WHITSON, JC
    [J]. PHYSICS OF FLUIDS, 1982, 25 (06) : 967 - 982
  • [10] Hierarchical non-linear factor analysis and topographic maps
    Ghahramani, Z
    Hinton, GE
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 10, 1998, 10 : 486 - 492