An Upper Bound of Singleton Type for Componentwise Products of Linear Codes

被引:17
|
作者
Randriambololona, Hugues [1 ,2 ]
机构
[1] Ecole Natl Super Telecommun Telecom ParisTech, F-75634 Paris 13, France
[2] LTCI CNRS UMR 5141, F-75634 Paris 13, France
关键词
Componentwise product; linear code; upper bound;
D O I
10.1109/TIT.2013.2281145
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We give an upper bound that relates the dimensions of some given number of linear codes, with the minimum distance of their componentwise product. A typical result is as follows: given t linear codes C-i of parameters [n, k(i)](q) with full support, one can find codewords c(i) epsilon C-i such that 1 <= w(c(1) * ... * c(t)) <= max(t = 1, n + t - (k(1) + ... + k(t))).
引用
收藏
页码:7936 / 7939
页数:4
相关论文
共 50 条
  • [11] On the upper bound of the minimum length of 5-dimensional linear codes
    Cheon, E. J.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2007, 37 : 225 - 232
  • [12] A New Upper Bound for Linear Codes and Vanishing Partial Weight Distributions
    Chen, Hao
    Xie, Conghui
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (12) : 8713 - 8722
  • [13] Synchronization Strings: Codes for Insertions and Deletions Approaching the Singleton Bound
    Haeupler, Bernhard
    Shahrasbi, Amirbehshad
    STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 33 - 46
  • [14] List Decoding of Cover Metric Codes Up to the Singleton Bound
    Liu, Shu
    Xing, Chaoping
    Yuan, Chen
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 2410 - 2416
  • [15] Synchronization Strings: Codes for Insertions and Deletions Approaching the Singleton Bound
    Haeupler, Bernhard
    Shahrasbi, Amirbehshad
    JOURNAL OF THE ACM, 2021, 68 (05)
  • [16] Generalized Singleton Type Upper Bounds
    Chen, Hao
    Qu, Longjiang
    Li, Chengju
    Lyu, Shanxiang
    Xu, Liqing
    Zhou, Mingshuo
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (05) : 3298 - 3308
  • [17] Componentwise ultimate bound and invariant set computation for switched linear systems
    Haimovich, H.
    Seron, M. M.
    AUTOMATICA, 2010, 46 (11) : 1897 - 1901
  • [18] On Linear Codes over Finite Singleton Local Rings
    Alabiad, Sami
    Alhomaidhi, Alhanouf Ali
    Alsarori, Nawal A.
    MATHEMATICS, 2024, 12 (07)
  • [19] An upper bound on the slope of convolutional codes
    Jordan, R
    Pavlushkov, V
    Zyablov, VV
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 424 - 424
  • [20] Upper bound on quantum stabilizer codes
    Li, Zhuo
    Xing, Li-Juan
    PHYSICAL REVIEW A, 2009, 79 (03):