Glycyrrhiza uralensis Transcriptome Landscape and Study of Phytochemicals

被引:76
|
作者
Ramilowski, Jordan A. [1 ]
Sawai, Satoru [2 ]
Seki, Hikaru [2 ,3 ]
Mochida, Keiichi [2 ,4 ,5 ]
Yoshida, Takuhiro [2 ]
Sakurai, Tetsuya [2 ]
Muranaka, Toshiya [2 ,3 ]
Saito, Kazuki [2 ,6 ]
Daub, Carsten O. [1 ,7 ]
机构
[1] RIKEN Yokohama Inst, RIKEN Ctr Life Sci Technol, Div Genom Technol, Tsurumi Ku, Yokohama, Kanagawa 2300045, Japan
[2] RIKEN Yokohama Inst, RIKEN Ctr Sustainable Resource Sci, Tsurumi Ku, Yokohama, Kanagawa 2300045, Japan
[3] Osaka Univ, Cell Technol Lab, Dept Biotechnol, Grad Sch Engn, Suita, Osaka 5650871, Japan
[4] RIKEN Biomass Engn Program, Tsurumi Ku, Yokohama, Kanagawa 2300045, Japan
[5] Yokohama City Univ, Kihara Inst Biol Res, Totsuka Ku, Yokohama, Kanagawa 2440813, Japan
[6] Chiba Univ, Grad Sch Pharmaceut Sci, Chuo Ku, Chiba 2608675, Japan
[7] Karolinska Inst, Dept Biosci & Nutr, SE-17177 Stockholm, Sweden
关键词
Database; De novo assembly; Glycyrrhiza uralensis; Phytochemicals; RNA-Seq; Transcriptome profiling; RNA-SEQ; SAPONIN BIOSYNTHESIS; FUNCTIONAL GENOMICS; GENE FAMILIES; LICORICE; TOOL; EXPRESSION; ROOT; CYTOCHROME-P450; IDENTIFICATION;
D O I
10.1093/pcp/pct057
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Medicinal and industrial properties of phytochemicals (e.g. glycyrrhizin) from the root of Glycyrrhiza uralensis (licorice plant) made it an attractive, multimillion-dollar trade item. Bioengineering is one of the solutions to overcome such high market demand and to protect plants from extinction. Unfortunately, limited genomic information on medicinal plants restricts their research and thus biosynthetic mechanisms of many important phytochemicals are still poorly understood. In this work we utilized the de novo (no reference genome sequence available) assembly of Illumina RNA-Seq data to study the transcriptome of the licorice plant. Our analysis is based on sequencing results of libraries constructed from samples belonging to different tissues (root and leaf) and collected in different seasons and from two distinct strains (low and high glycyrrhizin producers). We provide functional annotations and the expression profile of 43,882 assembled unigenes, which are suitable for various further studies. Here, we searched for G. uralensis-specific enzymes involved in isoflavonoid biosynthesis as well as elucidated putative cytochrome P450 enzymes and putative vacuolar saponin transporters involved in glycyrrhizin production in the licorice root. To disseminate the data and the analysis results, we constructed a publicly available G. uralensis database. This work will contribute to a better understanding of the biosynthetic pathways of secondary metabolites in licorice plants, and possibly in other medicinal plants, and will provide an important resource to further advance transcriptomic studies in legumes.
引用
收藏
页码:697 / 710
页数:14
相关论文
共 50 条
  • [21] Phenolic compounds from Glycyrrhiza uralensis (Chinese liquorice)
    Ali, Z.
    Khan, I. A.
    PLANTA MEDICA, 2015, 81 (11) : 946 - 946
  • [22] Flavonoids of the above-the-ground part of Glycyrrhiza uralensis
    Yuldashev, MP
    KHIMIYA PRIRODNYKH SOEDINENII, 1998, (04): : 552 - 553
  • [23] Licochalcone A:: A lipase inhibitor from the roots of Glycyrrhiza uralensis
    Won, Se-Ra
    Kim, Seung-Kyum
    Kim, Yong-Mu
    Lee, Phil-Ho
    Ryu, Jae-Hyung
    Kim, Jang-Won
    Rhee, Hae-Ik
    FOOD RESEARCH INTERNATIONAL, 2007, 40 (08) : 1046 - 1050
  • [24] Identification of Possibility of Glycyrrhiza uralensis as an Allergen by Protein Analysis
    An, Eun-Jin
    Kim, Kang-Hoon
    Lee, In-Seung
    Park, Ji Young
    Kim, Yumi
    Jung, Woo Sang
    Kwon, Daeho
    Jang, Hyeung-Jin
    BIOCHIP JOURNAL, 2018, 12 (01) : 75 - 82
  • [25] Glycoside Compounds From Glycyrrhiza uralensis and Their Neuroprotective Activities
    Wei, Guanhua
    Da, Honghong
    Zhang, Kaixue
    Zhang, Junmin
    Fang, Jianguo
    Yang, Zhigang
    NATURAL PRODUCT COMMUNICATIONS, 2021, 16 (02)
  • [26] Studies on the index compounds for HPLC analysis of Glycyrrhiza uralensis
    Shibano, M
    Henmi, A
    Matsumoto, Y
    Kusano, G
    Miyase, T
    Hatakeyama, Y
    HETEROCYCLES, 1997, 45 (10) : 2053 - 2060
  • [27] Metabolite Profiling and Transcriptome Analysis Explains Difference in Accumulation of Bioactive Constituents in Licorice (Glycyrrhiza uralensis) Under Salt Stress
    Wang, Chengcheng
    Chen, Lihong
    Cai, Zhichen
    Chen, Cuihua
    Liu, Zixiu
    Liu, Shengjin
    Zou, Lisi
    Tan, Mengxia
    Chen, Jiali
    Liu, Xunhong
    Mei, Yuqi
    Wei, Lifang
    Liang, Juan
    Chen, Jine
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [28] Characterization of a Glycyrrhizin-Deficient Strain of Glycyrrhiza uralensis
    Hayashi, Hiroaki
    Fujii, Isao
    Iinuma, Munekazu
    Shibano, Makio
    Ozaki, Kazuo
    Watanabe, Hitoshi
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2013, 36 (09) : 1448 - 1453
  • [29] Expressed sequence tags from rhizomes of Glycyrrhiza uralensis
    Sudo, Hiroshi
    Seki, Hikaru
    Sakurai, Nozomu
    Suzuki, Hideyuki
    Shibata, Daisuke
    Toyoda, Atsushi
    Totoki, Yasushi
    Sakaki, Yoshiyuki
    Lida, Osamu
    Shibata, Toshiro
    Kojoma, Mareshige
    Muranaka, Toshiya
    Saito, Kazuki
    PLANT BIOTECHNOLOGY, 2009, 26 (01) : 105 - 107
  • [30] Conditions and Stimulation for Germination in Glycyrrhiza uralensis Fisch Seeds
    MAO Pei-sheng
    AgriculturalSciencesinChina, 2008, 7 (12) : 1438 - 1444