Perspective Analysis of Machine Learning Algorithms for Detecting Network Intrusions

被引:0
|
作者
Nadiammai, G. V. [1 ]
Hemalatha, M. [2 ]
机构
[1] Karpagam Univ, Coimbatore, Tamil Nadu, India
[2] Karpagam Univ, Dept Software Syst & Res, Coimbatore, Tamil Nadu, India
关键词
Data Mining; Intrusion Detection; Machine Learning; Rule based Classifier and Function Based Classifier;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Network security has become an important issue due to the evolution of internet. It brings people not only together but also provides huge potential threats. Intrusion detection technique is considered as the immense method to deploy networks security behind firewalls. An intrusion is defined as a violation of security policy of the system. Intrusion detection systems are developed to detect those violations. Due to the effective data analysis method, data mining is introduced into IDS. This paper brings an idea of applying data mining algorithms to intrusion detection database. Performance of various rule and function based classifiers like Part, Ridor, NNge, DTNB, JRip, Conjunctive Rule, One R, Zero R, Decision Table, RBF, Multi Layer Perception and SMO algorithms are compared and result shows that SMOciassification algorithm performs well in terms of accuracy, specificity and sensitivity. The performance of the model is measured using 10-fold cross validation.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Detecting Simpson's Paradox: A Machine Learning Perspective
    Sharma, Rahul
    Garayev, Huseyn
    Kaushik, Minakshi
    Peious, Sijo Arakkal
    Tiwari, Prayag
    Draheim, Dirk
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2022, PT I, 2022, 13426 : 323 - 335
  • [32] Systematics Review on Detecting Cyberattack Threat by Social Network Analysis and Machine Learning
    Adek, Rizal Tjut
    Bustami, Bustami
    Ula, Munirul
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2022, VOL. 2, 2023, 448 : 567 - 577
  • [33] A Machine Learning Algorithms for Detecting Phishing Websites: A Comparative Study
    Taha, Mohammed A.
    Jabar, Haider D.A.
    Mohammed, Widad K.
    Iraqi Journal for Computer Science and Mathematics, 2024, 5 (03): : 275 - 286
  • [34] Detecting Denial of Service attacks using machine learning algorithms
    Kumari, Kimmi
    Mrunalini, M.
    JOURNAL OF BIG DATA, 2022, 9 (01)
  • [35] Detecting Bad Smells with Machine Learning Algorithms: an Empirical Study
    Cruz, Daniel
    Santana, Amanda
    Figueiredo, Eduardo
    2020 IEEE/ACM INTERNATIONAL CONFERENCE ON TECHNICAL DEBT, TECHDEBT, 2020, : 31 - 40
  • [36] Detecting Anomalies in Financial Data Using Machine Learning Algorithms
    Bakumenko, Alexander
    Elragal, Ahmed
    SYSTEMS, 2022, 10 (05):
  • [37] Performance of Different Machine Learning Algorithms in Detecting Financial Fraud
    Alhanouf Abdulrahman Saleh Alsuwailem
    Emad Salem
    Abdul Khader Jilani Saudagar
    Computational Economics, 2023, 62 : 1631 - 1667
  • [38] Detecting Denial of Service attacks using machine learning algorithms
    Kimmi Kumari
    M. Mrunalini
    Journal of Big Data, 9
  • [39] A Comparative Study of Machine Learning Algorithms for Detecting Breast Cancer
    Khan, Razib Hayat
    Miah, Jonayet
    Rahman, Md Minhazur
    Tayaba, Maliha
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 647 - 652
  • [40] Implementation of machine learning algorithms for detecting missing radioactive material
    Durbin, Matthew
    Lintereur, Azaree
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2020, 324 (03) : 1455 - 1461