Transition mean values of shifted convolution sums

被引:2
|
作者
Petrow, Ian [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
Shifted convolution sums; Modular forms; Eisenstein series; Multiple Dirichlet series; SELBERG L-FUNCTIONS; SUBCONVEXITY;
D O I
10.1016/j.jnt.2013.04.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a classical G L(2) holomorphic cusp form of full level and even weight which is a normalized eigenfunction for the Hecke algebra, and let lambda(n) be its Fourier coefficients. In this paper we study "shifted convolution sums" Sigma(n) lambda(n)lambda(n + h) after averaging over many shifts h and obtain asymptotic estimates. The result is somewhat surprising: one encounters a transition region depending on the ratio of the square of the length of the average over h to the length of the shifted convolution sum. The phenomenon encountered in this paper is similar to that found by Conrey, Farmer and Soundararajan in their paper "Transition Mean Values of Real Characters", and we discuss here the connection of both results to automorphic distributions, Eisenstein series and multiple Dirichlet series. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3264 / 3282
页数:19
相关论文
共 50 条
  • [21] Mean values of dedekind sums
    Conrey, JB
    Fransen, E
    Klein, R
    Scott, C
    JOURNAL OF NUMBER THEORY, 1996, 56 (02) : 214 - 226
  • [22] On Mean Values of Character Sums
    Zai Zhao MENG
    ActaMathematicaSinica(EnglishSeries), 2006, 22 (02) : 561 - 570
  • [23] SPECIAL VALUES OF SHIFTED CONVOLUTION DIRICHLET SERIES
    Mertens, Michael H.
    Ono, Ken
    MATHEMATIKA, 2016, 62 (01) : 47 - 66
  • [24] The spectral decomposition of shifted convolution sums over number fields
    Maga, Peter
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 744 : 1 - 27
  • [25] Finite Ramanujan expansions and shifted convolution sums of arithmetical functions
    Coppola, Giovanni
    Murty, M. Ram
    Saha, Biswajyoti
    JOURNAL OF NUMBER THEORY, 2017, 174 : 78 - 92
  • [26] Shifted convolution sums of Fourier coefficients with squarefull kernel functions
    Lu, Guangshi
    Wang, Dan
    LITHUANIAN MATHEMATICAL JOURNAL, 2020, 60 (01) : 51 - 63
  • [27] ESTIMATES FOR CERTAIN SHIFTED CONVOLUTION SUMS INVOLVING HECKE EIGENVALUES
    Hua, Guodong
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (02): : 319 - 330
  • [28] The circle method and shifted convolution sums involving the divisor function
    Hu, Guangwei
    Lao, Huixue
    JOURNAL OF NUMBER THEORY, 2024, 262 : 1 - 27
  • [29] Shifted convolution sums of Fourier coefficients with squarefull kernel functions
    Guangshi Lü
    Dan Wang
    Lithuanian Mathematical Journal, 2020, 60 : 51 - 63
  • [30] SHIFTED CONVOLUTION SUMS FOR GL(3) x GL(2)
    Munshi, Ritabrata
    DUKE MATHEMATICAL JOURNAL, 2013, 162 (13) : 2345 - 2362