New Relativistic Particle-In-Cell Simulation Studies of Prompt and Early Afterglows from GRBs

被引:0
|
作者
Nishikawa, K-, I [1 ]
Niemiec, J.
Sol, H. [2 ]
Medvedev, M. [3 ]
Zhang, B. [4 ]
Nordlund, A. [5 ]
Frederiksen, J. [5 ]
Hardee, P. [6 ]
Mizuno, Y. [1 ]
Hartmann, D. H. [7 ]
Fishman, G. J. [8 ]
机构
[1] Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA
[2] Inst Nucl Phys, PAN, PL-31342 Krakow, Poland
[3] LUTH, Observ Paris, F-92195 Meudon, France
[4] Univ Kansas, Dept Phys & Astrophys, Lawrence, KS 66045 USA
[5] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA
[6] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA
[7] Clemson Univ, Clemson, SC 29634 USA
[8] NASA, MSFC, Huntsville, AL 35805 USA
来源
HIGH ENERGY GAMMA-RAY ASTRONOMY | 2009年 / 1085卷
关键词
Weibel instability; magnetic field generation; radiation; RAY BURST SOURCES; MAGNETIC-FIELDS; SHOCKS; RADIATION; UPSTREAM; EMISSION; ORIGIN; PLASMA;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and microquasars commonly exhibit power-law emission spectra. Recent PIC simulations of relativistic electron-ion (or electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In collisionless, relativistic shocks, particle (electron, positron, and ion) acceleration is due to plasma waves and their associated instabilities (e.g., the Weibel (filamentation) instability) created in the shock region. The simulations show that the Weibel instability is responsible for generating and amplifying highly non-uniform, small-scale magnetic fields. These fields contribute to the electron's transverse deflection behind the jet head. The resulting "jitter" radiation from deflected electrons has different properties compared to synchrotron radiation, which assumes a uniform magnetic field. Jitter radiation may be important for understanding the complex time evolution and/or spectra in gamma-ray bursts, relativistic jets in general, and supernova remnants.
引用
收藏
页码:589 / +
页数:3
相关论文
共 50 条
  • [41] Multiple Boris integrators for particle-in-cell simulation
    Zenitani, Seiji
    Kato, Tsunehiko N.
    COMPUTER PHYSICS COMMUNICATIONS, 2020, 247
  • [42] A particle-in-cell method for anisotropic fluid simulation
    Parreiras, Emanuel Antonio
    Vieira, Marcelo Bernardes
    Machado, Arthur Gonze
    Renhe, Marcelo Caniato
    Giraldi, Gilson Antonio
    COMPUTERS & GRAPHICS-UK, 2022, 102 : 220 - 232
  • [43] Particle-in-cell simulations of the tearing instability for relativistic pair plasmas
    Schoeffler, K. M.
    Eichmann, B.
    Pucci, F.
    Innocenti, M. E.
    JOURNAL OF PLASMA PHYSICS, 2025, 91 (01)
  • [44] RELATIVISTIC FLUID-DYNAMICS CALCULATIONS WITH PARTICLE-IN-CELL TECHNIQUE
    HARLOW, FH
    AMSDEN, AA
    NIX, JR
    JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 20 (02) : 119 - 129
  • [46] PIConGPU: A Fully Relativistic Particle-in-Cell Code for a GPU Cluster
    Burau, Heiko
    Widera, Renee
    Hoenig, Wolfgang
    Juckeland, Guido
    Debus, Alexander
    Kluge, Thomas
    Schramm, Ulrich
    Cowan, Tomas E.
    Sauerbrey, Roland
    Bussmann, Michael
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2010, 38 (10) : 2831 - 2839
  • [47] Particle-in-cell simulation for breakdown phenomena in vacuum
    Ejiri, Haruki
    Fujii, Takashi
    Kumada, Akiko
    Hidaka, Kunihiko
    ELECTRICAL ENGINEERING IN JAPAN, 2021, 214 (02)
  • [48] Particle-in-cell simulation of the cathodic arc thruster
    Lueskow, Karl Felix
    Neumann, Patrick R. C.
    Bandelow, Gunnar
    Duras, Julia
    Kahnfeld, Daniel
    Kemnitz, Stefan
    Matthias, Paul
    Matyash, Konstantin
    Schneider, Ralf
    PHYSICS OF PLASMAS, 2018, 25 (01)
  • [49] Particle-in-cell simulation of stationary plasma thruster
    Taccogna, F.
    Longo, S.
    Capitelli, M.
    Schneider, R.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2007, 47 (8-9) : 635 - 656
  • [50] Particle-in-cell simulation in contact with a chaotic thermostat
    Morales, G. J.
    Decyk, V. K.
    Wang, A.
    PHYSICS OF PLASMAS, 2025, 32 (02)