Quadrature interferometry for nonequilibrium ultracold atoms in optical lattices

被引:7
|
作者
Tiesinga, E. [1 ,2 ]
Johnson, P. R. [3 ]
机构
[1] NIST, Joint Quantum Inst, Gaithersburg, MD 20899 USA
[2] Univ Maryland, Gaithersburg, MD 20899 USA
[3] American Univ, Dept Phys, Washington, DC 20016 USA
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 01期
基金
美国国家科学基金会;
关键词
QUANTUM PHASE-TRANSITION; FESHBACH RESONANCES; DYNAMICS;
D O I
10.1103/PhysRevA.87.013423
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We develop an interferometric technique for making time-resolved measurements of field-quadrature operators for nonequilibrium ultracold bosons in optical lattices. The technique exploits the internal state structure of magnetic atoms to create two subsystems of atoms in different spin states and lattice sites. A Feshbach resonance turns off atom-atom interactions in one spin subsystem, making it a well-characterized reference state, while atoms in the other subsystem undergo nonequilibrium dynamics for a variable hold time. Interfering the subsystems via a second beam-splitting operation, time-resolved quadrature measurements on the interacting atoms are obtained by detecting relative spin populations. The technique can provide quadrature measurements for a variety of Hamiltonians and lattice geometries (e. g., cubic, honeycomb, superlattices), including systems with tunneling, spin-orbit couplings using artificial gauge fields, and higher-band effects. Analyzing the special case of a deep lattice with negligible tunneling, we obtain the time evolution of both quadrature observables and their fluctuations. As a second application, we show that the interferometer can be used to measure atom-atom interaction strengths with super-Heisenberg scaling (n) over bar (-3/2) in the mean number of atoms per lattice site, and standard quantum limit scaling M-1/2 in the number of lattice sites. In our analysis, we require M >> 1 and for realistic systems (n) over bar is small, and therefore the scaling in total atom number N = (n) over barM is below the Heisenberg limit; nevertheless, measurements testing the scaling behaviors for interaction-based quantum metrologies should be possible in this system. DOI: 10.1103/PhysRevA.87.013423
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Diagram rules for a chain of entangled ultracold atoms in optical lattices
    Liu, Shu Juan
    PHYSICA B-CONDENSED MATTER, 2007, 389 (02) : 269 - 274
  • [42] Nanoplasmonic Lattices for Ultracold Atoms
    Gullans, M.
    Tiecke, T. G.
    Chang, D. E.
    Feist, J.
    Thompson, J. D.
    Cirac, J. I.
    Zoller, P.
    Lukin, M. D.
    PHYSICAL REVIEW LETTERS, 2012, 109 (23)
  • [43] Ultracold atoms in bichromatic lattices
    Fallani, L.
    Inguscio, M.
    NANO OPTICS AND ATOMICS: TRANSPORT OF LIGHT AND MATTER WAVES, 2011, 173 : 179 - 231
  • [44] Dynamical phase interferometry of cold atoms in optical lattices
    London, Uri
    Gat, Omri
    PHYSICAL REVIEW A, 2011, 84 (06):
  • [45] Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms
    Williams, R. A.
    Pillet, J. D.
    Al-Assam, S.
    Fletcher, B.
    Shotter, M.
    Foot, C. J.
    OPTICS EXPRESS, 2008, 16 (21): : 16977 - 16983
  • [46] Nonequilibrium relaxation transport of ultracold atoms
    Gallego-Marcos, Fernando
    Platero, Gloria
    Nietner, Christian
    Schaller, Gernot
    Brandes, Tobias
    PHYSICAL REVIEW A, 2014, 90 (03)
  • [47] Density-dependent synthetic magnetism for ultracold atoms in optical lattices
    Greschner, Sebastian
    Huerga, Daniel
    Sun, Gaoyong
    Poletti, Dario
    Santos, Luis
    PHYSICAL REVIEW B, 2015, 92 (11)
  • [48] Tight-binding models for ultracold atoms in honeycomb optical lattices
    Ibanez-Azpiroz, Julen
    Eiguren, Asier
    Bergara, Aitor
    Pettini, Giulio
    Modugno, Michele
    PHYSICAL REVIEW A, 2013, 87 (01):
  • [49] Orbital ordering of ultracold alkaline-earth atoms in optical lattices
    Sotnikov, Andrii
    Oppong, Nelson Darkwah
    Zambrano, Yeimer
    Cichy, Agnieszka
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [50] Driven collective quantum tunneling of ultracold atoms in engineered optical lattices
    Khomeriki, R.
    Ruffo, S.
    Wimberger, S.
    EPL, 2007, 77 (04)