Quadrature interferometry for nonequilibrium ultracold atoms in optical lattices

被引:7
|
作者
Tiesinga, E. [1 ,2 ]
Johnson, P. R. [3 ]
机构
[1] NIST, Joint Quantum Inst, Gaithersburg, MD 20899 USA
[2] Univ Maryland, Gaithersburg, MD 20899 USA
[3] American Univ, Dept Phys, Washington, DC 20016 USA
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 01期
基金
美国国家科学基金会;
关键词
QUANTUM PHASE-TRANSITION; FESHBACH RESONANCES; DYNAMICS;
D O I
10.1103/PhysRevA.87.013423
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We develop an interferometric technique for making time-resolved measurements of field-quadrature operators for nonequilibrium ultracold bosons in optical lattices. The technique exploits the internal state structure of magnetic atoms to create two subsystems of atoms in different spin states and lattice sites. A Feshbach resonance turns off atom-atom interactions in one spin subsystem, making it a well-characterized reference state, while atoms in the other subsystem undergo nonequilibrium dynamics for a variable hold time. Interfering the subsystems via a second beam-splitting operation, time-resolved quadrature measurements on the interacting atoms are obtained by detecting relative spin populations. The technique can provide quadrature measurements for a variety of Hamiltonians and lattice geometries (e. g., cubic, honeycomb, superlattices), including systems with tunneling, spin-orbit couplings using artificial gauge fields, and higher-band effects. Analyzing the special case of a deep lattice with negligible tunneling, we obtain the time evolution of both quadrature observables and their fluctuations. As a second application, we show that the interferometer can be used to measure atom-atom interaction strengths with super-Heisenberg scaling (n) over bar (-3/2) in the mean number of atoms per lattice site, and standard quantum limit scaling M-1/2 in the number of lattice sites. In our analysis, we require M >> 1 and for realistic systems (n) over bar is small, and therefore the scaling in total atom number N = (n) over barM is below the Heisenberg limit; nevertheless, measurements testing the scaling behaviors for interaction-based quantum metrologies should be possible in this system. DOI: 10.1103/PhysRevA.87.013423
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Ultracold atoms in optical lattices
    Dickerscheid, DBM
    van Oosten, D
    Denteneer, PJH
    Stoof, HTC
    PHYSICAL REVIEW A, 2003, 68 (04):
  • [2] ULTRACOLD YTTERBIUM ATOMS IN OPTICAL LATTICES
    Sugawa, Seiji
    Taie, Shintaro
    Fukuhara, Takeshi
    Uetake, Satoshi
    Yamazaki, Rekishu
    Takasu, Yosuke
    Takahashi, Yoshiro
    LASER SPECTROSCOPY, 2010, : 222 - 231
  • [3] Cooling and entangling ultracold atoms in optical lattices
    Yang, Bing
    Sun, Hui
    Huang, Chun-Jiong
    Wang, Han-Yi
    Deng, Youjin
    Dai, Han-Ning
    Yuan, Zhen-Sheng
    Pan, Jian-Wei
    SCIENCE, 2020, 369 (6503) : 550 - +
  • [4] Quantum simulations with ultracold atoms in optical lattices
    Gross, Christian
    Bloch, Immanuel
    SCIENCE, 2017, 357 (6355) : 995 - 1001
  • [5] Staggered manipulation of ultracold atoms in optical lattices
    Zhang, Huirong
    Guo, Qiuyi
    Ma, Zhaoyuan
    Chen, Xuzong
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [6] Quantum criticality in ultracold atoms on optical lattices
    Rigol, M
    Muramatsu, A
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2005, 242 (09): : 1850 - 1856
  • [7] Quantum coherence and entanglement with ultracold atoms in optical lattices
    Bloch, Immanuel
    NATURE, 2008, 453 (7198) : 1016 - 1022
  • [8] Exploring quantum matter with ultracold atoms in optical lattices
    Bloch, I
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2005, 38 (09) : S629 - S643
  • [9] Quantum coherence and entanglement with ultracold atoms in optical lattices
    Immanuel Bloch
    Nature, 2008, 453 : 1016 - 1022
  • [10] Spin Gradient Thermometry for Ultracold Atoms in Optical Lattices
    Weld, David M.
    Medley, Patrick
    Miyake, Hirokazu
    Hucul, David
    Pritchard, David E.
    Ketterle, Wolfgang
    PHYSICAL REVIEW LETTERS, 2009, 103 (24)