CNN-VWII: An efficient approach for large-scale video retrieval by image queries

被引:42
|
作者
Zhang, Chengyuan [1 ]
Lin, Yunwu [1 ]
Zhu, Lei [1 ]
Liu, Anfeng [1 ]
Zhang, Zuping [1 ]
Huang, Fang [1 ]
机构
[1] Cent South Univ, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
943.3 Special Purpose Instruments;
D O I
10.1016/j.patrec.2019.03.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to solve the problem of large-scale video retrieval by a query image. Firstly, we define the problem of top-k image to video query. Then, we combine the merits of convolutional neural networks(CNN for short) and Bag of Visual Word(BoVW for short) module to design a model for video frames information extraction and representation. In order to meet the requirements of large-scale video retrieval, we propose a visual weighted inverted index(VWII for short) and related algorithm to improve the efficiency and accuracy of retrieval process. Comprehensive experiments show that our proposed technique achieves substantial improvements (up to an order of magnitude speed up) over the stateof-the-art techniques with similar accuracy. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 88
页数:7
相关论文
共 50 条
  • [31] ImageProof: Enabling Authentication for Large-Scale Image Retrieval
    Guo, Shangwei
    Xu, Jianliang
    Zhang, Ce
    Xu, Cheng
    Xiang, Tao
    2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019), 2019, : 1070 - 1081
  • [32] Deep Product Quantization for Large-Scale Image Retrieval
    Zhai, Qi
    Jiang, Mingyan
    2019 4TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS (ICBDA 2019), 2019, : 198 - 202
  • [33] A Framework for the Revision of Large-Scale Image Retrieval Benchmarks
    Hassan, Muhammad Umair
    Shohag, Md Shakil Ahamed
    Niu, Dongmei
    Shaukat, Kamran
    Zhang, Mingxuan
    Zhao, Wenshuang
    Zhao, Xiuyang
    ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [34] Adaptive relevance feedback for large-scale image retrieval
    Nicolae Suditu
    François Fleuret
    Multimedia Tools and Applications, 2016, 75 : 6777 - 6807
  • [35] Region similarity arrangement for large-scale image retrieval
    Zhang, Dongming
    Tang, Jingya
    Jin, Guoqing
    Zhang, Yongdong
    Tian, Qi
    NEUROCOMPUTING, 2018, 272 : 461 - 470
  • [36] Large-scale Image Retrieval based on the Vocabulary Tree
    Cheng, Bo
    Zhuo, Li
    Zhang, Pei
    Zhang, Jing
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 2, 2014, : 299 - 304
  • [37] Large-Scale Image Retrieval with Compressed Fisher Vectors
    Perronnin, Florent
    Liu, Yan
    Sanchez, Jorge
    Poirier, Herve
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 3384 - 3391
  • [38] Cascaded Deep Hashing for Large-Scale Image Retrieval
    Lu, Jun
    Zhang, Li
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT VI, 2018, 11306 : 419 - 429
  • [39] Adaptive relevance feedback for large-scale image retrieval
    Suditu, Nicolae
    Fleuret, Francois
    MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (12) : 6777 - 6807
  • [40] Large-scale instance-level image retrieval
    Amato, Giuseppe
    Carrara, Fabio
    Falchi, Fabrizio
    Gennaro, Claudio
    Vadicamo, Lucia
    INFORMATION PROCESSING & MANAGEMENT, 2020, 57 (06)