Exploiting Ecore's Reflexivity for Bootstrapping Domain-Specific Code-Generators

被引:3
|
作者
Joerges, Sven [1 ]
Steffen, Bernhard [1 ]
机构
[1] TU Dortmund, Chair Programming Syst, Dortmund, Germany
关键词
code generation; bootstrapping; metamodeling; reflexivity; EMF; model-driven development; service orientiation; domain-specific languages;
D O I
10.1109/SEW.2012.14
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper shows how the reflexivity of Ecore can be exploited for incrementally bootstrapping domain-specific code generators in the model-driven and service-oriented code generation framework Genesys. Key to this technology is the EMF SIB Generator, which, based on a very small set of manually written code generator services called SIBs, incrementally generates services in a bootstrapping fashion. To this end, it leverages Ecore's metamodel, which is specified in Ecore itself, to iteratively enlarge the set of SIBs until all concepts of Ecore are covered. On this basis, the EMF SIB Generator can then be used to generate all services required for constructing a corresponding code generator for any given metamodel specified in Ecore. This approach can be staightforwardly applied to arbitrary metalevels and elegantly enables the model-driven and service-oriented construction of code generators for Ecore-based domain-specific languages.
引用
收藏
页码:72 / 81
页数:10
相关论文
共 50 条
  • [31] Selective hidden random fields: Exploiting domain-specific saliency for event classification
    Jain, Vidit
    Singhal, Amit
    Luo, Jiebo
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 695 - +
  • [32] Using AI-Based Code Completion for Domain-Specific Languages
    Piereder, Christina
    Fleck, Guenter
    Geist, Verena
    Moser, Michael
    Pichler, Josef
    PRODUCT-FOCUSED SOFTWARE PROCESS IMPROVEMENT, PROFES 2023, PT I, 2024, 14483 : 227 - 242
  • [33] Runtime code generation in C++ as a foundation for domain-specific optimisation
    Beckmann, O
    Houghton, A
    Mellor, M
    Kelly, PHJ
    DOMAIN-SPECIFIC PROGRAM GENERATION, 2003, 3016 : 291 - 306
  • [34] Exploiting structured high-level knowledge for domain-specific visual classification
    Palazzo, S.
    Murabito, F.
    Pino, C.
    Rundo, F.
    Giordano, D.
    Shah, M.
    Spampinato, C.
    PATTERN RECOGNITION, 2021, 112
  • [35] From Domain-Specific Language to Code: Smart Contracts and the Application of Design Patterns
    Woehrer, Maximilian
    Zdun, Uwe
    IEEE SOFTWARE, 2020, 37 (05) : 37 - 42
  • [36] Connecting domain-specific features to source code: towards the automatization of dashboard generation
    Andrea Vázquez-Ingelmo
    Francisco José García-Peñalvo
    Roberto Therón
    Daniel Amo Filvà
    David Fonseca Escudero
    Cluster Computing, 2020, 23 : 1803 - 1816
  • [37] An Energy-Efficient Visual Object Tracking Processor Exploiting Domain-Specific Features
    Gong, Yuchuan
    Guo, Hongtao
    Liu, Xiyuan
    Zheng, Jingxiao
    Zhang, Teng
    Que, Luying
    Jia, Conghan
    Ou, Guangbin
    Jiao, Xiben
    Liu, Zherong
    Chang, Liang
    Zhou, Liang
    Zhou, Jun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (05) : 2794 - 2798
  • [38] Explainable Machine Learning Exploiting News and Domain-Specific Lexicon for Stock Market Forecasting
    Carta, Salvatore M.
    Consoli, Sergio
    Piras, Luca
    Podda, Alessandro Sebastian
    Recupero, Diego Reforgiato
    IEEE ACCESS, 2021, 9 : 30193 - 30205
  • [39] What's domain-specific about theory of mind?
    Stone, Valerie E.
    Gerrans, Philip
    SOCIAL NEUROSCIENCE, 2006, 1 (3-4) : 309 - 319
  • [40] Systematic adaptation of dynamically generated source code via domain-specific examples
    Song, Myoungkyu
    Tilevich, Eli
    IET SOFTWARE, 2018, 12 (02) : 112 - 119