Global solutions of the random vortex filament equation

被引:4
|
作者
Brzezniak, Z. [1 ]
Gubinelli, M. [2 ,3 ]
Neklyudov, M. [1 ]
机构
[1] Univ York, Dept Math, Heslington, Yorks, England
[2] Univ Paris 09, CEREMADE, F-75775 Paris 16, France
[3] Univ Paris 09, CNRS, UMR 7534, F-75775 Paris 16, France
关键词
VORTICITY; EVOLUTION;
D O I
10.1088/0951-7715/26/9/2499
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a global solution for the filament equation with the inital condition given by a geometric rough path in the sense of Lyons (1998 Rev. Mat. Iberoamericana 14 215-310). Our work gives a positive answer to a question left open in recent publications: Berselli and Gubinelli (2007 Commun. Math. Phys. 269 693-713) showed the existence of a global solution for a smooth initial condition while Bessaih et al (2005 Ann. Probab. 33 1825-55) proved the existence of a local solution for a general initial condition given by a rough path.
引用
收藏
页码:2499 / 2514
页数:16
相关论文
共 50 条
  • [21] Vortex Filament Equation for a Regular Polygon in the Hyperbolic Plane
    de la Hoz, Francisco
    Kumar, Sandeep
    Vega, Luis
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (01)
  • [22] Vortex Filament Equation for a Regular Polygon in the Hyperbolic Plane
    Francisco de la Hoz
    Sandeep Kumar
    Luis Vega
    Journal of Nonlinear Science, 2022, 32
  • [23] Vortex Filament and Global Instability Analysis of the Crow Mode
    Angel Tendero, Juan
    Paredes, Pedro
    Roura, Miquel
    Govindarajan, Rama
    Theofilis, Vassilios
    INSTABILITY AND CONTROL OF MASSIVELY SEPARATED FLOWS, 2015, 107 : 229 - 234
  • [24] Vortex Filament Solutions of the Navier-Stokes Equations
    Bedrossian, Jacob
    Germain, Pierre
    Harrop-Griffiths, Benjamin
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2023, 76 (04) : 685 - 787
  • [25] Waves on a vortex filament: exact solutions of dynamical equations
    Brugarino, Tommaso
    Mongiovi, Maria Stella
    Sciacca, Michele
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 1081 - 1094
  • [26] Waves on a vortex filament: exact solutions of dynamical equations
    Tommaso Brugarino
    Maria Stella Mongiovi
    Michele Sciacca
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 1081 - 1094
  • [27] Global Stability of Vortex Solutions of the Two-Dimensional Navier-Stokes Equation
    Thierry Gallay
    C. Eugene Wayne
    Communications in Mathematical Physics, 2005, 255 : 97 - 129
  • [28] Global stability of vortex solutions of the two-dimensional Navier-Stokes equation
    Gallay, T
    Wayne, CE
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 255 (01) : 97 - 129
  • [29] Geometry of Solutions of the Quasi-Vortex Filament Equation in Euclidean 3-Space E3
    Hamouda, Ebrahem
    Moaaz, Osama
    Cesarano, Clemente
    Askar, Sameh
    Elsharkawy, Ayman
    MATHEMATICS, 2022, 10 (06)
  • [30] Long time existence for vortex filament equation in a Riemannian manifold
    Koiso, Norihito
    OSAKA JOURNAL OF MATHEMATICS, 2008, 45 (02) : 265 - 271