A solar-blind photodetector based on β-Ga2O3 film deposited on MgO (100) substrates by RF magnetron sputtering

被引:29
|
作者
Chen, Xinrong [1 ]
Mi, Wei [1 ]
Wu, Jianwen [1 ]
Yang, Zhengchun [1 ]
Zhang, Kailiang [1 ]
Zhao, Jinshi [1 ]
Luan, Chongbiao [2 ]
Wei, YanLu [3 ]
机构
[1] Tianjin Univ Technol, Sch Elect Informat Engn, Tianjin Key Lab Film Elect & Commun Devices, Tianjin 300384, Peoples R China
[2] China Acad Engn Phys, Inst Fluid Phys, Mianshan Rd 64, Mianyang 621999, Sichuan, Peoples R China
[3] Liaocheng Power Supply Co State Grid Shandong Ele, Liaocheng 252000, Shandong, Peoples R China
关键词
beta-Ga2O3; Photodetector; Magnetron sputtering; MgO substrate; THIN-FILMS; ULTRAVIOLET PHOTODETECTOR; TEMPERATURE; PERFORMANCE; GROWTH;
D O I
10.1016/j.vacuum.2020.109632
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
beta-Ga2O3 thin films were deposited on the MgO (100) substrates at 600 degrees C, 650 degrees C and 700 degrees C by the radio frequency magnetron sputtering. The film fabricated at 700 degrees C has high crystallinity with the orientation relationship of beta-Ga2O3 (100)parallel to MgO (100). The metal-semiconductor-metal (MSM) structured solar-blind photodetectors were prepared based on the beta-Ga2O3 film fabricated at 700 degrees C successfully. In this study, the photodetector has excellent performance with the extremely low dark current 3.5 pA at 10 V bias, and the I-light/I-dark ratio is over 10(4) with short rise time (0.07 s/0.53 s) and decay time (0.06 s/0.16 s). Low dark current and short rise time and decay time can be both achieved simultaneously. The good consistency and repeatability of the sample show great potential in the practical applications of solar-blind photodetectors.
引用
下载
收藏
页数:5
相关论文
共 50 条
  • [1] Enhanced Performance of Solar-Blind UV Photodetector Based on β-Ga2O3 Nanowires Grown by a Magnetron Sputtering
    Gu, Keyun
    Zhang, Zilong
    Tang, Ke
    Huang, Jian
    Shen, Yue
    Ye, Haitao
    Wang, Linjun
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2024, 18 (04):
  • [2] High transmittance β-Ga2O3 thin films deposited by magnetron sputtering and post-annealing for solar-blind ultraviolet photodetector
    Wang, Jiang
    Ye, Lijuan
    Wang, Xia
    Zhang, Hong
    Li, Li
    Kong, Chunyang
    Li, Wanjun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 803 : 9 - 15
  • [3] A Solar-Blind β-Ga2O3 Nanowire Photodetector
    Weng, W. Y.
    Hsueh, T. J.
    Chang, S. J.
    Huang, G. J.
    Chang, S. P.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2010, 22 (10) : 709 - 711
  • [4] Ga2O3 photodetector arrays for solar-blind imaging
    Chen, Yan-Cheng
    Lu, Ying-Jie
    Liu, Qian
    Lin, Chao-Nan
    Guo, Juan
    Zang, Jin-Hao
    Tian, Yong-Zhi
    Shan, Chong-Xin
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (09) : 2557 - 2562
  • [5] A Highly Transparent β-Ga2O3 Thin Film-Based Photodetector for Solar-Blind Imaging
    He, Miao
    Zeng, Qing
    Ye, Lijuan
    CRYSTALS, 2023, 13 (10)
  • [6] Capacitive β-Ga2O3 solar-blind photodetector with graphene electrode
    Kim, Ayeong
    Lee, Geonyeop
    Kim, Jihyun
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2021, 39 (05):
  • [7] Growth of Ga2O3 Nanowires and the Fabrication of Solar-Blind Photodetector
    Weng, W. Y.
    Hsueh, T. J.
    Chang, Shoou-Jinn
    Huang, G. J.
    Hung, S. C.
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2011, 10 (05) : 1047 - 1052
  • [8] Ultrasensitive Flexible κ-Phase Ga2O3 Solar-Blind Photodetector
    Tang, Xiao
    Lu, Yi
    Krishna, Shibin
    Babatain, Wedyan
    Ben Hassine, Mohamed
    Liao, Che-Hao
    Xiao, Na
    Liu, Zhiyuan
    Li, Xiaohang
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (30) : 34844 - 34854
  • [9] A β-Ga2O3 Solar-Blind Photodetector Prepared by Furnace Oxidization of GaN Thin Film
    Weng, W. Y.
    Hsueh, T. J.
    Chang, S. J.
    Huang, G. J.
    Hsueh, H. T.
    IEEE SENSORS JOURNAL, 2011, 11 (04) : 999 - 1003
  • [10] Dual-Channel Solar-Blind UV Photodetector Based on β-Ga2O3
    Luchechko, Andriy
    Vasyltsiv, Vyacheslav
    Kostyk, Lyudmyla
    Pavlyk, Bohdan
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2019, 216 (22):