Optimal kernels for unsupervised learning

被引:0
|
作者
Hochreiter, S [1 ]
Obermayer, K [1 ]
机构
[1] Bernstein Ctr Computat Neurosci, D-10587 Berlin, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate the optimal kernel for sample-based model selection in unsupervised learning if maximum likelihood approaches are intractable. Given a set of training data and a set of data generated by the model, two kernel density estimators are constructed. A model is selected through gradient descent w.r.t. the model parameters on the integrated squared difference between the density estimators. Firstly we prove that convergence is optimal, i.e. that the cost function has only one global minimum w.r.t. the locations of the model samples, if and only if the kernel in the reparametrized cost function is a Coulomb kernel. As a consequence, Gaussian kernels commonly used for density estimators are suboptimal. Secondly we show that the absolute value of the difference between model and reference density converges at least with 1/t. Finally, we apply the new methods to distribution free ICA and to nonlinear ICA.
引用
收藏
页码:1895 / 1899
页数:5
相关论文
共 50 条
  • [31] Unsupervised Machine Learning Clustering Identifies Phenotypes of Optimal Candidates in Mitraclip Patients
    Chao, Chiehju
    Wu, Han-Lun
    Seri, Amith
    Shanbhag, Anusha
    Rayfield, Corbin
    Wang, Yuxiang
    Smith, Sean
    Fortuin, Floyd D.
    Sweeney, John
    Eleid, Mackram F.
    Alkhouli, Mohamad
    CIRCULATION, 2021, 144
  • [32] Unsupervised Deep Learning for AC Optimal Power Flow via Lagrangian Duality
    Chen, Kejun
    Bose, Shourya
    Zhang, Yu
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 5305 - 5310
  • [33] OPTIMAL UNSUPERVISED MOTOR LEARNING FOR DIMENSIONALITY REDUCTION OF NONLINEAR CONTROL-SYSTEMS
    SANGER, TD
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (06): : 965 - 973
  • [34] Correction: K-means tree: an optimal clustering tree for unsupervised learning
    Pooya Tavallali
    Peyman Tavallali
    Mukesh Singhal
    The Journal of Supercomputing, 2024, 80 : 8551 - 8551
  • [35] OPTIMAL UNSUPERVISED LEARNING IN A SINGLE-LAYER LINEAR FEEDFORWARD NEURAL NETWORK
    SANGER, TD
    NEURAL NETWORKS, 1989, 2 (06) : 459 - 473
  • [36] Unsupervised learning
    Valkenborg, Dirk
    Rousseau, Axel-Jan
    Geubbelmans, Melvin
    Burzykowski, Tomasz
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2023, 163 (06) : 877 - 882
  • [37] Unsupervised learning
    Ghahramani, Z
    ADVANCED LECTURES ON MACHINE LEARNING, 2004, 3176 : 72 - 112
  • [38] LEARNING SEQUENCE KERNELS
    Cortes, Corinna
    Mohri, Mehryar
    Rostamizadeh, Afshin
    2008 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2008, : 2 - +
  • [39] Online learning with kernels
    Kivinen, J
    Smola, AJ
    Williamson, RC
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (08) : 2165 - 2176
  • [40] Learning with Box Kernels
    Melacci, Stefano
    Gori, Marco
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) : 2680 - 2692