Cells integrate mechanical and biochemical signals via a process called mechanotransduction to generate essential gene expression patterns in space and time. This is vital for cell migration and proliferation as well as tissue morphogenesis and remodeling. While the force-sensing and force-transducing mechanisms are generally known, it remains unclear how mechanoresponsive transcription factors (TFs) are selectively translocated into the nucleus upon force activation. Such TFs include Yes-Associated Protein (YAP), Myocardin Related Transcription Factors (MRTFs), Hypoxia Induced Factors (HIFs) and others. Here, we discuss how the nucleocytoplasmic transport machinery intersects with mechanoresponsive TFs to facilitate their selective transport through nuclear pore complexes.
机构:
Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USAUniv Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
O'Shea, EK
Kaffman, A
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USAUniv Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
Kaffman, A
Komeili, A
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USAUniv Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
Komeili, A
Rank, NM
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USAUniv Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA