Structural and functional characterization of a plant S-nitrosoglutathione reductase from Solanum lycopersicum

被引:62
|
作者
Kubienova, Lucie [1 ]
Kopecny, David [1 ,2 ]
Tylichova, Martina [2 ]
Briozzo, Pierre [3 ]
Skopalova, Jana [4 ]
Sebela, Marek [1 ,2 ]
Navratil, Milan [5 ]
Tache, Roselyne [3 ]
Luhova, Lenka [1 ]
Barroso, Juan B. [6 ]
Petrivalsky, Marek [1 ]
机构
[1] Palacky Univ, Fac Sci, Dept Biochem, CZ-78371 Olomouc, Czech Republic
[2] Ctr Reg Hana Biotechnol & Agr Res, Dept Prot Biochem & Prote, CZ-78371 Olomouc, Czech Republic
[3] INRA AgroParisTech, UMR1318, Inst Jean Pierre Bourgin, F-78026 Versailles, France
[4] Palacky Univ, Fac Sci, Dept Analyt Chem, CZ-77146 Olomouc, Czech Republic
[5] Palacky Univ, Fac Sci, Dept Cell Biol & Genet, CZ-78371 Olomouc, Czech Republic
[6] Univ Jaen, Grp Senalizac Mol & Sistemas Antioxidantes Planta, CSIC, Unidad Asociada,Area Bioquim & Biol Mol, E-23071 Jaen, Spain
关键词
Alcohol dehydrogenase; S-(hydroxymethyl)glutathione; S-nitrosoglutathione reductase; S-nitrosothiols; Solanum lycopersicum; Tomato; DEPENDENT FORMALDEHYDE DEHYDROGENASE; LIVER ALCOHOL-DEHYDROGENASE; NITRIC-OXIDE; HORSE LIVER; NITROSATIVE STRESS; REACTIVE NITROGEN; TERNARY COMPLEX; JASMONIC ACID; PEA-PLANTS; GLUTATHIONE;
D O I
10.1016/j.biochi.2012.12.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
S-nitrosoglutathione reductase (GSNOR), also known as S-(hydroxymethyl)glutathione (HMGSH) dehydrogenase, belongs to the large alcohol dehydrogenase superfamily, namely to the class III ADHs. GSNOR catalyses the oxidation of HMGSH to S-formylglutathione using a catalytic zinc and NAD(+) as a coenzyme. The enzyme also catalyses the NADH-dependent reduction of S-nitrosoglutathione (GSNO). In plants, GSNO has been suggested to serve as a nitric oxide (NO) reservoir locally or possibly as NO donor in distant cells and tissues. NO and NO-related molecules such as S-nitrosothiols (S-NOs) play a central role in the regulation of normal plant physiological processes and host defence. The enzyme thus participates in the cellular homeostasis of S-NOs and in the metabolism of reactive nitrogen species. Although GSNOR has recently been characterized from several organisms, this study represents the first detailed biochemical and structural characterization of a plant GSNOR, that from tomato (Solanum lycopersicum). SIGSNOR gene expression is higher in roots and stems compared to leaves of young plants. It is highly expressed in the pistil and stamens and in fruits during ripening. The enzyme is a dimer and preferentially catalyses reduction of GSNO while glutathione and S-methylglutathione behave as non-competitive inhibitors. Using NAD(+), the enzyme oxidizes HMGSH and other alcohols such as cinnamylalcohol, geraniol and omega-hydroxyfatty acids. The crystal structures of the apoenzyme, of the enzyme in complex with NAD(+) and in complex with NADH, solved up to 1.9 angstrom resolution, represent the first structures of a plant GSNOR. They confirm that the binding of the coenzyme is associated with the active site zinc movement and changes in its coordination. In comparison to the well characterized human GSNOR, plant GSNORs exhibit a difference in the composition of the anion-binding pocket, which negatively influences the affinity for the carboxyl group of omega-hydroxyfatty acids. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:889 / 902
页数:14
相关论文
共 50 条
  • [31] S-nitrosoglutathione reductase and its role in pulmonary arterial hypertension
    Brown-Steinke, K.
    deRonde, K.
    Sullivan, S.
    Yemen, S.
    Palmer, L. A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2010, 181
  • [32] Effect of abiotic stress stimuli on S-nitrosoglutathione reductase in plants
    Lucie Kubienová
    Tereza Tichá
    Jana Jahnová
    Lenka Luhová
    Barbora Mieslerová
    Marek Petřivalský
    Planta, 2014, 239 : 139 - 146
  • [33] The Physiological Implications of S-Nitrosoglutathione Reductase (GSNOR) Activity Mediating NO Signalling in Plant Root Structures
    Ventimiglia, Leslie
    Mutus, Bulent
    ANTIOXIDANTS, 2020, 9 (12) : 1 - 11
  • [34] Genetic variation in S-nitrosoglutathione reductase (GSNOR) and childhood asthma
    Wu, Hao
    Romieu, Isabelle
    Sienra-Monge, Juan-Jose
    del Rio-Navarro, Blanca Estela
    Anderson, Daniel M.
    Jenchura, Charlotte A.
    Li, Huiling
    Ramirez-Aguilar, Matiana
    Lara-Sanchez, Irma del Carmen
    London, Stephanie J.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2007, 120 (02) : 322 - 328
  • [35] S-Nitrosoglutathione Reductase (GSNOR) Deficiency Results in Secondary Hypogonadism
    Masterson, Thomas A.
    Arora, Himanshu
    Kulandavelu, Shathiyah
    Carroll, Rona S.
    Kaiser, Ursula B.
    Gultekin, Sakir H.
    Hare, Joshua M.
    Ramasamy, Ranjith
    JOURNAL OF SEXUAL MEDICINE, 2018, 15 (05): : 654 - 661
  • [36] S-nitrosoglutathione reductase disfavors cadmium tolerance in shoots of Arabidopsis
    Guan, Meiyan
    Zheng, Xiaolong
    Zhu, Yaxin
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [37] Effect of abiotic stress stimuli on S-nitrosoglutathione reductase in plants
    Kubienova, Lucie
    Ticha, Tereza
    Jahnova, Jana
    Luhova, Lenka
    Mieslerova, Barbora
    Petrivalsky, Marek
    PLANTA, 2014, 239 (01) : 139 - 146
  • [38] AUGMENTATION OF CFTR MATURATION BY S-NITROSOGLUTATHIONE REDUCTASE IN EPITHELIAL CELLS
    Zaman, K.
    Bennett, D.
    Lakshman, S.
    Greenberg, Z.
    Yemen, S.
    DeRonde, K.
    Straub, A.
    Sun, F.
    Marozkina, N.
    Hunt, J.
    Palmer, L.
    Lewis, S.
    Gaston, B.
    PEDIATRIC PULMONOLOGY, 2012, 47 : 236 - 236
  • [39] S-Nitrosoglutathione Reductase (GSNOR) Modulates Reendothelialization and Vascular Repair
    Manica, Andre
    Marchini, Julio F.
    Travers, Richard
    Tesmenitsky, Yevgenia
    Wara, Akm K.
    Mooroka, Toshifumu
    Feinberg, Mark W.
    Stamler, Jonathan S.
    Simon, Daniel I.
    Croce, Kevin
    CIRCULATION, 2011, 124 (21)
  • [40] The Role of S-Nitrosoglutathione Reductase in the Physiological Function of the Female Heart
    Ebenebe, Oby
    Kohr, Mark
    FREE RADICAL BIOLOGY AND MEDICINE, 2022, 180 : 21 - 22