A short proof of the Mock Theta Conjectures using Maass forms

被引:11
|
作者
Folsom, Amanda [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
D O I
10.1090/S0002-9939-08-09434-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A celebrated work of D. Hickerson gives a proof of the Mock Theta Conjectures using Hecke-type identities discovered by G. Andrews. Here, we respond to a remark by K. Bringmann, K. Ono and R. Rhoades and provide a short proof of the Mock Theta Conjectures by realizing each side of the identities as the holomorphic projection of a harmonic weak Maass form.
引用
收藏
页码:4143 / 4149
页数:7
相关论文
共 50 条
  • [21] Universal mock theta functions as quantum Jacobi forms
    Carroll, Greg
    Corbett, James
    Folsom, Amanda
    Thieu, Ellie
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2019, 6 (01)
  • [22] On Short Sums Involving Fourier Coefficients of Maass Forms
    Jaasaari, Jesse
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2020, 32 (03): : 761 - 793
  • [23] p-adic properties of Maass forms arising from theta series
    Garthwaite, Sharon Anne
    Penniston, David
    MATHEMATICAL RESEARCH LETTERS, 2008, 15 (2-3) : 459 - 470
  • [24] HARMONIC MAASS-JACOBI FORMS WITH SINGULARITIES AND A THETA-LIKE DECOMPOSITION
    Bringmann, Kathrin
    Raum, Martin
    Richter, Olav K.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (09) : 6647 - 6670
  • [25] Weak Maass-Poincare series and weight 3/2 mock modular forms
    Jeon, Daeyeol
    Kang, Soon-Yi
    Kim, Chang Heon
    JOURNAL OF NUMBER THEORY, 2013, 133 (08) : 2567 - 2587
  • [26] CLASSIFICATION OF CONGRUENCES FOR MOCK THETA FUNCTIONS AND WEAKLY HOLOMORPHIC MODULAR FORMS
    Andersen, Nickolas
    QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (03): : 781 - 805
  • [27] Weak harmonic Maass forms of weight 5/2 and a mock modular form for the partition function
    Ahlgren S.
    Andersen N.
    Research in Number Theory, 1 (1)
  • [28] Quantum mock modular forms arising from eta–theta functions
    Folsom A.
    Garthwaite S.
    Kang S.-Y.
    Swisher H.
    Treneer S.
    Research in Number Theory, 2 (1)
  • [30] Mock period functions, sesquiharmonic Maass forms, and non-critical values of L-functions
    Bringmann, Kathrin
    Diamantis, Nikolaos
    Raum, Martin
    ADVANCES IN MATHEMATICS, 2013, 233 (01) : 115 - 134