SURE-BASED BLIND GAUSSIAN DECONVOLUTION

被引:0
|
作者
Xue, Feng [1 ]
Blu, Thierry [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
关键词
Blind deconvolution; minimization of blur SURE; Wiener filtering; estimation of blur variance; BLUR ESTIMATION; IMAGE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a novel blind deconvolution method that consisting of firstly estimating the variance of the Gaussian blur, then performing non-blind deconvolution with the estimated PSF. The main contribution of this paper is the first step to estimate the variance of the Gaussian blur, by minimizing a novel objective functional: an unbiased estimate of a blur MSE (SURE). The optimal parameter and blur variance are obtained by minimizing this criterion over linear processings that have the form of simple Wiener filterings. We then perform non-blind deconvolution using our recent high-quality SURE-based deconvolution algorithm. The very competitive results show the highly accurate estimation of the blur variance (compared to the ground-truth value) and the great potential of developing more powerful blind deconvolution algorithms based on the SURE-type principle.
引用
收藏
页码:452 / 455
页数:4
相关论文
共 50 条
  • [31] Monte Carlo SURE-Based Parameter Selection for Parallel Magnetic Resonance Imaging Reconstruction
    Weller, Daniel S.
    Ramani, Sathish
    Nielsen, Jon-Fredrik
    Fessler, Jeffrey A.
    MAGNETIC RESONANCE IN MEDICINE, 2014, 71 (05) : 1760 - 1770
  • [32] Blind deconvolution of Gaussian blurred images containing additive white Gaussian noise
    Robinson, Philip E.
    Roodt, Yuko
    2013 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2013, : 1092 - 1097
  • [33] SURE-Based Regularization Parameter Selection for TomoSAR Imaging via Maximum-Likelihood
    Serafin Garcia, Sergio
    Campo Becerra, Martin del Gustavo
    Ortega Cisneros, Susana
    Reigber, Andreas
    2020 21ST INTERNATIONAL RADAR SYMPOSIUM (IRS 2020), 2020, : 270 - 275
  • [34] MONTE CARLO SURE-BASED REGULARIZATION PARAMETER SELECTION FOR PENALIZED-LIKELIHOOD IMAGE RECONSTRUCTION
    Zhou, Jian
    Qi, Jinyi
    2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014, : 1095 - 1098
  • [35] SUPER GAUSSIAN PRIORS FOR BLIND COLOR DECONVOLUTION OF HISTOLOGICAL IMAGES
    Perez-Bueno, Fernando
    Vega, Miguel
    Naranjo, Valery
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 3010 - 3014
  • [36] Blind deconvolution model in periodic setting with fractional Gaussian noise
    Benhaddou, Rida
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (03) : 438 - 449
  • [37] Fast Bayesian blind deconvolution with Huber Super Gaussian priors
    Zhou, Xu
    Vega, Miguel
    Zhou, Fugen
    Molina, Rafael
    Katsaggelos, Aggelos K.
    DIGITAL SIGNAL PROCESSING, 2017, 60 : 122 - 133
  • [38] Multichannel blind deconvolution using a generalized Gaussian source model
    Dept. of System and Bioengineering, Faculty of Engineering, Cairo University, Egypt
    不详
    Math Comput Appl, 2007, 1 (1-9):
  • [39] ICA with Homomorphic Deconvolution Based Seismic Blind Deconvolution
    Gao Wei
    Liu Huaishan
    Zhang Jin
    2009 INTERNATIONAL FORUM ON COMPUTER SCIENCE-TECHNOLOGY AND APPLICATIONS, VOL 2, PROCEEDINGS, 2009, : 421 - 424
  • [40] SAR IMAGE DENOISING USING TOTAL VARIATION BASED REGULARIZATION WITH SURE-BASED OPTIMIZATION OF THE REGULARIZATION PARAMETER
    Palsson, Frosti
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    Benediktsson, Jon A.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 2160 - 2163